نتایج جستجو برای: فضای برگمن
تعداد نتایج: 26105 فیلتر نتایج به سال:
فرض می کنیم b حاصل ضرب بلاشکه ی متناهی باشد از tb برای عملگر ضرب تحلیلی (که عملگر توپلاینز نیز نامیده می شود) روی فضای برگمن در دیسک واحد استفاده می کنیم. ما نشان می دهیم که عملگر های (tbtb-i)به توان یک دوم و (tbtb-i) به توان یک دوم هر دو نگاشت هایی پوشا از فضای برگمن a2 به فضای هاردی h به توان 2 و از فضای هاردی hبه توان 2 به فضای دیریکله d هستند.
مقاله حاضر تلاشی برای نشان دادن این است که برای جبرهای تبدیلات ضربی روی فضاهای برگمن، به زیرفضاهای پایای بخصوصی رهنمون می شود.
در این پایان نامه فصلهای تشکیل دهنده عبارتند از: فصل اول، قضایا و تعاریف اساسی و مقدماتی بیان شده است . در فصل دوم، ابتدا" مقسوم علیه متعارفی را برای زیرفضاهای پایا و دنباله های صفر فضای برگمن شناسایی و سپس ، ارتباط بین زیرفضاهای پایا و فضاهای داخلی مشخص شده است . در فصل سوم، دسته خاصی از زیرفضاهای پایای فضای برگمن، تحت عنوان" زیرفضاهای پایای تولید شده توسط عملگر هانکل" را مشخص می سازد . در خات...
زیر فضای بسته m از فضای باناخx را متمم دار نامیم هر گاه زیر فضایی مانندn درx وجود دشته باشد که x ? n ? m. از تعریف روشن است که در یک فضای هیلبرت، هر زیرفضای بسته متمم دار است. چون مطالعه و توصیف زیرفضاهای متمم دار، کمک زیادی به شناختن خود فضاهای باناخ و در نتیجهکمک به شناخت عملگرهای روی فضاهای باناخ می نماید، لذا بررسی این زیر فضاها در آنالیز تابعی و نظریه عملگرها دارای اهمیت فوق العاده ای است....
در این پایان نامه الحاق عملگرهای ترکیبی را بر فضای هیلبرت از توابع تحلیلی بر دیسک باز محاسبه می کنیم. به ویژه برای فضای هاردی، فضای دیریکله و فضای برگمن یک فرمول کلی به دست می آوریم. در تمامی موارد، الحاق عملگر ترکیبی به صورت اثر آن بر هسته ی تکثیری فضای مربوطه مشخص می شود.
کران داری, فشردگی عملگرهای ترکیبی وزن دار روی فضای برگمن با استفاده از تبدبل های برزین عمومی سرشت نمایی شده اند. اغلب نتایج بدست آمده برای فضاهای هاردی و فضابی برگمن برقرار هستند. در این پایان نامه کران داری مرتب عملگر ترکیبی وزن دار روی فضای برگمنl_a ^2 را بررسی می کنیم و آن را به فضای هاردی وفضای برگمن وزن دار تعمیم می دهیم.
موضوع جدید فضاهای برگمن عبارت است از ترکیب استادانه آنالیز تابعی و نظریه عملگرها با نظریه توابع تحلیلی. این نظریه علاوه بر آنکه دارای مفاهیم مشترک زیادی با نظریه فضاهای هاردی است، دارای عناصر جدیدی مانند هندسه هذلولوی، هسته های بازمولد و تابعهای گرین دو-همساز است. در این مقاله دو قسمتی سعی خواهیم کرد محققین جوان را با مقدمات ورود به این دنیای تازه آشنا کنیم.
در این پایان نامه ، پس از تعاریف و مفاهیم اولیه در آنالیز تابعی، آنالیز حقیقی و مختلط به تعاریف و شرح فضاهای برگمن وزن دار و هاردی می پر دازیم ونرم های آنها را معرفی می کنیم . در این جاتعاریف متری برگمن وانداز? برل مثبت متناهی رادر فضای برگمن وزندار و فضای هاردی که مکرر دراین پایان نامه به کار می رود، می آوریم . سپس عملگر ترکیب وعملگر ترکیب وزن دار در فضاهای ذکر شده را مطر ح می کنیم ترجیح می ده...
چکیده: این رساله از سه فصل تشکیل شده است، ابتدا در فصل اول به بیان تعاریف و قضایای مورد نیاز در دو فصل بعد می پردازیم. فصل دوم از سه بخش تشکیل شده است. در بخش اول از این فصل شرایط وجود بردارهای دوری مشترک را بیان و اثبات نموده و در بخش دوم ساختار طیفی برای الحاق عملگرهای ضربی را مورد بررسی قرار می دهیم. همچنین در بخش سوم به معرفی تابع هسته مولد پرداخته و بردارهای دوری مشترک برای الحاق عملگرها...
در این پایان نامه عضویت مشتق حاصلضربهای بلاشکه در فضاهای هاردی وبرگمن، بخصوص برای حاصلضربهای بلاشکه درونیاب و برای حاصلضربهای بلاشکه که صفرهایش در زاویه استولز واقع است مورد مطالعه قرار می گیرد و برهانهای جدید و ساده تری نسبت به قبل بدست می آید که این قضایای جدید تعمیم دهنده ی نتایج بدست آمده توسط آهرن، کلارک، کهن، کیم، نیومن، پروتاس، رودین، وینوگراد و سایر محققین می باشد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید