پیش بینی گرایش احساسی سرمایه گذاران با استفاده ازتکنیک‏های ماشین بردار پشتیبان(SVM) و درخت تصمیم(DT)

نویسندگان

  • ایمان داداشی گروه حسابداری، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران
  • رضا تقوی گروه حسابداری، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران
چکیده

گرایش‏های احساسی سرمایه‏گذاران بیانگر حاشیه میزان خوش‏بینی و بدبینی سهامداران نسبت به یک سهم می‏باشد. احساسات سرمایه‏گذاران تحت تاثیر پدیده‏های روانشناختی، به رفتار افراد جهت می‏بخشند و در بسیاری از مواقع، موجب انحراف افراد از رفتار عقلایی می‏شوند. هدف از انجام این پژوهش، بکارگیری روش‏های فراابتکاری جهت پیش‏بینی گرایش‏های احساسی سرمایه‏گذاران است. در این پژوهش با استفاده از 97 نسبت مالی مربوط به176 شرکت پذیرفته‏شده در بورس اوراق بهادار تهران طی دوره زمانی 1385 تا1397، اقدام به پیش‏بینی گرایش‏های احساسی سرمایه‏گذاران با استفاده از تکنیک‏های ماشین بردار پشتیبان (SVM) و درخت تصمیم (DT) شده است. برای سنجش گرایش احساسی سرمایه‏گذاران از 4 شاخص قدرت نسبی، خط روان‏شناسانه، حجم معاملات و نرخ تعدیل گردش سهام بهره گرفته شده که در نهایت به کمک روش تجزیه و تحلیل مولفه‏های اساسی (PCA) اقدام به ترکیب این شاخص‏ها نموده‏ایم. جهت مقایسه روش‏های پیش‏بینی، از مقادیر میانگین مطلق خطا (MAE) و ریشه میانگین مربعات خطا (RMSE) استفاده شده است. نتایج حاصل از تحلیل داده‏ها بیانگر آن است که خطای پیش‏بینی روش ماشین بردار پشتیبان در مقایسه با درخت تصمیم کمتر است.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی تغییرات فصلی نرخ ارز با استفاده از روش درخت تصمیم و ماشین بردار پشتیبان

هدف این مطالعه بررسی قدرت پیش بینی از طریق مدلهای یادگیری ماشین ،ماشین بردار پشتیبان svm و درخت تصمیم chaid در بازار ارز غیر رسمی دلار- ریال ایران می باشد .در این راستا پس از مطالعه ادبیات موضوع به انجام آزمون های ریشه واحد و همچنین ضریب همبستگی پیرسون مبادرت گردید .با استفاده از ضریب همبستگی پیرسون صحت گزینش متغیرهای ورودی مشخص گردید .در گام بعدی با ورود متغیرهای تأثیر گذار به مدل به ساخت مدل ...

15 صفحه اول

ارزیابی وپتانسیل سنجی خطروقوع سیل درشهرجناح با استفاده از الگوریتم ماشین پشتیبان بردار (SVM)

یکی از انواع فرآیند های دامنه ای که هر ساله موجب خسارت جانی و مالی فراوان در بسیاری از نقاط ایران و جهان می شود وقوع سیل است. شناسایی مناطق مستعد وقوع سیل از طریق پهنه بندی خطر، یکی از اقدامات موثر و ضروری در کاهش خطرات احتمالی و مدیریت آن می باشد. هدف اصلی این پژوهش، ارزیابی وقوع سیل در شهر جناح با استفاده از مدل ماشین بردار پشتیبان می باشد. در ابتدا نقشه DEM محدوده مورد مطالع...

متن کامل

پیش بینی رواناب روزانه با مدل حداقل مربعات ماشین بردار پشتیبان (ls-svm)

مدل های داده محور از جمله ابزارهایی هستند که به منظور شبیه سازی در علوم مختلف استفاده می شوند. روش ماشین بردار پشتیبان به عنوان یکی از جدیدترین این نوع ابزارها اخیراً در علوم مرتبط با آب مورد توجه قرار گرفته است. در هیدرولوژی و منابع آب، این مدل ها با شبیه سازی فرآیند بارش-رواناب، مقدار رواناب را در حوزه های آبخیز بدون ایستگاه اندازه گیری و با حداقل زمان ممکن و کمترین هزینه برآورد می کنند. هدف ا...

متن کامل

پیش بینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی

هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (pca) بر عملکرد مدل ماشین بردار پشتیبان (svm) برای پیش بینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل svm، دبی جریان ماهانه پیش بینی شد. سپس با استفاده از pca تعداد متغیرهای ورودی به مدل svm از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...

متن کامل

توانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی

درماندگی مالی پیش از ورشکستگی مالی رخ می‌دهد و پیش بینی موثر آن یک مسئله‌ی مهم و چالش برانگیز برای شرکت‌ها می‌باشد. تحقیق حاضر به پیش بینی درماندگی مالی در قالب مدل ماشین بردار پشتیبان و با استفاده از ترکیبات جریان نقد می‌پردازد. اهمیت ابزارهای داده کاوی، و توانایی این ابزارها در پیش بینی و طبقه بندی متغیرها، استفاده از آن‌ها را در مباحث مختلف مالی از جمله پیش بینی ورشکستگی، پیش بینی درماندگی م...

متن کامل

پیش بینی عمق آب شستگی اطراف پایه پل با استفاده از ماشین های بردار پشتیبان

چکیده- آب شستگی یکی از مهم ترین عوامل خرابی پل ها است. بنابر این، تخمین عمق آب شستگی پای پل ها اهمیت زیادی برخوردار دارد. تاکنون فرمول ها و روابط تجربی زیادی برای تخمین عمق چاله آب شستگی ارائه شده است؛ اما این روابط از دقت مناسبی برخوردار نیستند. علاوه بر این، پیچیدگی مدل سازی فرایند آب شستگی سبب شده است تا از روش های جایگزین روابط تجربی، مانند روش های داده کاوی برای تخمین عمق آبشستگی پای پل ها...

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 11  شماره 45

صفحات  544- 570

تاریخ انتشار 2020-12-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021