نتایج جستجو برای: توپولوژی ماکزیمال
تعداد نتایج: 1374 فیلتر نتایج به سال:
ادوین هویت، m- توپولوژی روی (x) cرا تعریف کرد و آن را با cm( x ) نشان داد و ثابت کرد که خواص توپولوژیکی معین فضای x، می تواند خواص توپولوژیکی معین cm( x ) را مشخص کند. به عنوان مثال او نشان داد که x شبه فشرده است، اگر و تنها اگر فضای cm( x ) متری پذیر باشد. در این حالت m- توپولوژی دقیقاً توپولوژی همگرای یکنواخت می شود. در این مقاله توپولوژی ظریف تری روی c( x ) تعریف می کنیم که پایه اش بر عناصر...
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
خودسانی یا فرکتالی بودن پدیده ای مهم در طبیعت است که در بسیاری از وجوه تمدن جدید انعکاس یافته است. این پدیده علاوه بر هنر، در فیزیک، شیمی علوم پزشکی و علوم کامپیوتر نیز رخ می نماید. خودسانی در مباحث مختلفی از ریاضیات و مدلسازی ریاضی از جمله دستگاههای دینامیکی و آشوب، فرآیندهای تصادفی و فیزیک آماری، توپولوژی و هندسه فرکتالی نیز ظاهر می شود.
چکیده ندارد.
یک فضای توپولوژی دوگانه شامل دو توپولوژی است که روز یک مجموعه تعریف شده اند.در این پایان نامه مجموعه های نیم بسته ستاره ی تعمیم یافته و نیم باز ستاره ی تعمیم یافته در فضاهای توپولوژی دوگانه بررسی شده اند. همچنین پیوستگی نگاشت ها همبندی و فشردگی در فضاهای توپولوژی دوگانه با توجه به این مجموعه ها تعریف و خواص ان ها مورد مطالعه قرار می گیرند.
چکیده ندارد.
فرض کنیم r یک حلقه جابجایی باشد و m یک r – مدول باشد. هدف از این مقاله معرفی کلاس جدیدی از مدول های روی r به نام r – مدول های x – انژکتیومی باشد. در جایی که x طیف اول m (مجموعه همه زیر مدول های اول m ) است. این کلاس خانواده ای از مدول های برتر را در برمیگیرد. در این مقاله هدف ما توسعه ی جزئیات مدولهای ضربی، ضربی ضعیف و برتر برای این کلاس جدید از مدول ها می باشد. در ادامه برای مدول برتر m بع...
فرض کنید r حلقه جابجایی و نوتری وi وj ایده آل هایی از r باشند. اگر r حلقه ی موضعی با ایده آل ماکزیمال m باشد، ثابت می کنیم: تساوی inf{ i |?? h?_(i,j)?^i(m) آرتینی نیست }= inf { depthm_p ? p? w(i,j){m}} برقرار است که در آن m یک r – مدول متناهی مولد است و w(i,j)={ p? spec(r): i^(n )?p+j ,? n?1}. 2.برای هر r- مدول متناهی مولد m با بعد d، ?? h?_(i,j)?^d(m) آرتینی است. در وقع سوپریمم اعداد ...
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
کاپلانسکی در سال 1970 مساله زیر را مطرح کرد: فرض کنید a و b جبرهای باناخ مختلط نیم ساده باشند و t یک نگاشت خطی یکدار حافظ طیف از a بروی b باشد. آیا t یک همریختی جردن است؟ در این پایان نامه ثابت می کنیم که مساله کاپلانسکی برای کلاس خاصی از جبرهای باناخ جواب مثبت دارد. ثابت می کنیم که هر نگاشت خطی یکدار حافظ ایده الهای چپ ماکزیمال از یک c-ستار جبر بروی c-ستار جبر یکدار بطور محض نامتناهی یک همریخ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید