نتایج جستجو برای: عملگرهای هیلبرت اشمیت
تعداد نتایج: 2414 فیلتر نتایج به سال:
چکیده در این پایان نامه به معرفی منطق پیوسته و ساختارهای متریک پرداخته و سپس با در نظر گرفتن فضاهای هیلبرت به عنوان ساختارهای متریک، تئوری این فضاها را از دید منطق پیوسته مورد مطالعه قرار می دهیم. هدف اصلی بررسی تعریف پذیری در این تئوری می باشد. نشان خواهیم داد عملگرهای خطی تعریف پذیر روی فضاهای هیلبرت به صورت عملگرهای اسکالر به علاوه فشرده هستند. همچنین توصیف عملگرهای تعریف پذیر نتایج بیشتری ...
در این پایان نامه بعضی نامساوی های مربوط به شعاع عددی و نرم عملگرها وماکزیمم قسمت حقیقی برای عملگرهای خطی کراندار در فضاهای هیلبرت وتحت شرایط مناسب برای عملگرهای مشمول و همچنین بعضی از نامساوی های ابتدایی برای یافتن کرانهای بالای اختلاف نرم وشعاع عددی برای عملگرهای خطی کراندار با شرایط ویژه در فضاهای هیلبرت آورده شده اند.
یکی از قضایای مهم آنالیز تابعی کلاسیک، قضیه ای موسوم به نام اتکینسون است که بیان می کند عملگر خطی و کراندارt از h به h فردهولم است اگر و تنها اگر تصویر h تحت t (ran t) بسته بوده و dim ker t و dim(h/ran(t)) متناهی باشند. در سال 1953 میلادی، کاپالانسکی با الهام از تعریف فضای هیلبرت، مفهوم جدیدی به نام c* - مدول هیلبرت را ارائه نمود و از آن پس تلاش های فراوانی از سوی ریاضیدان های مختلف، از جمله و...
در این پایان نامه تعمیم های برد عددی مورد توجه قرار گرفته و در مورد بردهای عددی ویژه و لومر عملگرهای کراندار روی فضاهای هیلبرت و باناخ و نیز برد عددی جبری عناصر یک جبر نرم دار یکانی بحث شده است. یکی از ویژگی های بردعددی کلاسیک برای عملگرهای کراندار روی فضاهای هیلبرت تحدب آن می باشد. با این وجود، برد عددی ویژه برای عملگرهای کراندار روی فضاهای باناخ در حالت کلی محدب نیست ولی همواره همبند بوده ...
اصطلاح پیراحاصلضرب امروزه در مقالات برای نشان دادن یک عملگر دوخطی استفاده می شود. این عملگر دوخطی با وجود اینکه ناجابه جایی است تا حدودی از ضرب معمولی توابع خوش رفتار تر است.پیراحاصلضرب ها اولین بار در نظریه ی عملگرهای پیرادیفرانسیل پذیر بانی [۱] ظهور پیدا کردند.. این نظریه نقطه عطفی در نظریه ی عملگرهای شبه دیفرانسیلی بود که کافمن و مِیِردر [۳] از پیشگامان آن بودند. کلمه ی یونانی paraدر زب...
در این پروژه شرایطی لازم و کافی برای ماتریس های مختلط n+n مطرح می شوند که تحت آن نرمال باشند همچنین شرایطی نیز برای نرمال بودن عملگرهای خطی فشرده روی فضای هیلبرت تفکیک پذیر در حالت کلی بررسی می شوند در ادامه، چند نامساوی از مقادیر ویژه ی جمع عملگرهای فضای هیلبرت آورده شده است
هدف از این پایان نامه بررسی انواع کران های بالا برای شعاع اقلیدسی عملگرهای خطی کران دار n تایی روی فضای هیلبرت است. که این کار با بکارگیری چند تعمیم از نامساوی بسل مانند نامساوی بوس بلمن و بومبری است همچنین درباره نرم و شعاع عددی عملگرهای خطی کران دار n تایی روی فضای هیلبرت بحث می کنیم
چکیده: نامساوی های عملگری روی فضای هیلبرت نقش مهمی را در نظریه عملگرها دارد که هدف اصلی این رساله نشان دادن نتایج اخیر درباره ای نامساوی ها، برای توابع پیوسته از عملگرهای خودالحاقی بر فضای هیلبرت مختلط است. در این پژوهش بعد از معرفی عملگرها، به بررسی برخی از این نامساوی ها پرداخته و ارتباط بین این نامساوی ها را مطرح کرده، و در نهایت کاربردی از عملگرها را در حالت ماتریس های متناهی البعد برای...
در قضیه لکس-میلگرام فرم های دوخطی پیوسته و اضطراری روی فضاهای هیلبرت مورد بررسی قرار می گیرند. ما به دنبال یافتن تعمیم هایی برای این قضیه هستیم. در اولین تعمیم که ارائه می دهیم با اعمال شرطی بر عملگرهای خطی روی فضاهای هیلبرت به این نتیجه دست می یابیم که این عملگرها پیوسته و معکوس پذیرند. پس از آن با پذیرفتن برخی ایده های نظریه نامساوی های تابعی به بیان تعمیمی دیگر برای قضیه لکس-میلگرام می پرد...
هدف از این پایان نامه بررسی انواع کران های بالا برای شعاع اقلیدسی عملگرهای خطی کران دار n تایی روی فضای هیلبرت است. این کار با بکارگیری چند تعمیم از نامساوی بسل مانند نامساوی بواس-بلمن و بومبری است. همچنین درباره نرم و شعاع عددی عملگرهای خطی کران دار nتایی روی فضای هیلبرت بحث می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید