نتایج جستجو برای: فضای برداری
تعداد نتایج: 51240 فیلتر نتایج به سال:
این رساله در سه فصل به شرح زیر تنظیم گردیده است. فصل اول دربردارنده نتایج اصلی این رساله در مورد نقطه ثابت نگاشت های چندمقداری تعریف شده روی فضاهای متریک برداری مقدار می باشد. این فصل شامل سه بخش است: در بخش اول مفاهیم و قضایای مقدماتی مورد نیاز در بخش های بعد، ارائه می شود. در بخش دوم برخی قضایای معروف نقطه ثابت برای نگاشت های تک مقداری را معرفی می کنیم. سپس با اثبات قضایایی برای ...
گیریم ( x, t) یک فضای توپولوژی باشد و x ? a. گوییم x به ?- بستار a متعلق است و می نویسیم x ? cl?a، هرگاه هر همسایگی بسته ی x مجموعه ی a را قطع کند. جفت (x, cl?) را یک فضای بستاری یا یک فضای همسایگی می نامیم. هرگاهa = cl?a ، آن گاه زیرمجموعه ی a را ?- بسته گوییم. مجموعه های ?- بسته، مجموعه های بسته در مجموعه ی xهمراه با توپولوژی جدید t? خواهند بود. توپولوژی نیم- منظم شده یt را با t?نشان می دهیم...
در این رساله، به بررسی عملگرهای خطی کراندار و فشرده بر روی فضاهای برداری توپولوژیک و همچنین، همسانی های کراندار، کراندار کلی، و فشرده بر روی حلقه های توپولوژیک می پردازیم. در واقع، خواصی چون جبر توپولوژیک بودن و کامل بودن را برای رده های متفاوت از عملگرهای خطی کراندار بر روی یک فضای برداری توپولوژیک مورد بررسی قرار می دهیم. همچنین، روابطی را بین عملگرهای خطی کراندار و عملگرهای فشرده بر روی یک ف...
در این رساله ابتدا به بررسی قضایای نقطه ثابت برای نگاشت های ضعیف سازگار در فضاهای نوع متریک و نوع متریک مخروطی بدون نیاز به پیوستگی نگاشت ها می پردازیم. در ادامه، قضایای نقطه ثابت دوتایی و چهارتایی را برای نگاشت های ضعیف سازگار بیان و اثبات می کنیم. سپس وجود نقاط ثابت و نقاط ثابت سه تایی را برای -tانقباض ها در فضای متریک مخروطی بررسی می کنیم. در این قسمت برای تضمین کاربردی بودن نتایج، مسائلی ...
فضای متریک مخروطی تعمیمی از فضای متریک معمولی می باشد که در قرن بیستم معرفی شده است. تا کنون قضایای نقطه ثابت و نقطه ثابت مشترک متعددی در فضای متریک مخروطی اثبات و ارائه شده است. در این پایان نامه با جایگزین کردن فضای برداری توپولوژیک به جای فضای باناخ حقیقی در مجموعه مقدار متر مخروطی, تعمیمی از فضای متریک مخروطی را بیان می کنیم که با عنوان فضای متریک مخروطی برداری توپولوژیک معرفی گردیده...
در این پایان نامه، دو نوع توپولوژی فازی تعریف شده روی فضاهای خطی نرم دار فازی ارائه شده است. در ادامه نشان داده شده است که فضاهای خطی نرم دار فازی با توپولوژی نوع اول یک فضای برداری توپولوژیک فازی نیستند اما با توپولوژی نوع دوم هستند، یعنی توابع جمع برداری و ضرب اسکالر نسبت به توپولوژی نوع دوم پیوسته فازی هستند.
از آنجا که روابط ترتیبی بر صفحه مختلط قابل بیان نیست در این پایان نامه ابتدا با تعریف یک رابطه ترتیب جزئی روی صفحه مختلط و سپس با معرفی یک متر مختلط مقدار فضای متریک مختلط مقدار را توصیف میکنیم با بهبود شرایط انقباضی و با معرفی نگاشت های سازگار نظریه نقطه ثابت را بر فضای متریک مختلط مقدار تعمیم میدهیم سپس فضای جدید b-متریک را تعریف کرده و یک قضییه اساسی نقطه ثابت مشترک برای بک جفت نگاشت سازگار ...
در این پایان نامه بر روی مفاهیمی همچون kb-فضا، عملگرهای به طور b-ضعیف فشرده و عملگرهای به طور ضعیف فشرده ترتیبی و مفاهیم مرتبط با مشبکه های باناخ را مطالعه خواهیم کرد و ثابت خواهیم کرد که اگر e یک مشبکه ی باناخ و x فضای باناخ باشد در این صورت عملگر به طور b-ضعیف فشرده است اگر و تنها اگر به طور ضعیف فشرده ی ترتیبی باشد.
تقریباً در بسیاری از علوم، به ویژه مهندسی، این سوال اساسی مطرح می شود: تحت چه شرایطی یک شیء که به طور تقریبی در یک خاصیت مورد نظر صدق می کند، به شی ای که به طور دقیق در همان خاصیت صدق کند، نزدیک خواهد شد؟ در معادلات تابعی، می توان این سوال را چنین مطرح کنیم: در صورتی که جواب معادله ای به میزان خیلی کوچک با جواب دقیق معادله داده شده تفاوت داشته باشد، چگونه این جواب تقریبی به جواب دقیق معادله دا...
فرض کنیم ((l(b(h جبر تمام عملگرهای خطی روی b (h) و p یک خاصیت روی b(h) است. به ازای l(b(h)) گوئیم که یعنی (t) دارای خاصیت p می باشد اگر و فقط اگر (t) دارای این خاصیت باشد. در حالت خاص اگر i نگاشت همانی روی b(h) باشد، i به این معنی است که خاصیت p را در هر دو جهت حفظ می کند. هر خاصیت p یک کلاس هم ارزی روی l(b(h)) ایجاد می کند که قصد داریم به مطالعه روابط بین کلاس های هم ارزی با توجه به خاصیت ها...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید