نتایج جستجو برای: مقادیر ویژه جزیی

تعداد نتایج: 101057  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - پژوهشکده ریاضیات 1393

اساس کار در این پایاننامه به دست آوردن یک کران مطلوب برای مقادیر ویژهی اکسترمال رده ای خاص از ماتریسهای سهقطری متقارن تاپلیتز است. در فصل ? یک کران مطلوب برای کوچکترین و بزرگترین مقدار ویژه ماتریسهای سه قطری متقارن تاپلیتز که دو عنصر خارج از قطر اصلی آن دچار آشفتگی می شوند را با استفاده از یک رابطه ی بازگشتی که در متن پایان نامه آورده شده، به دست می آوریم. در ادامه یک مثال کاربردی مهم در حل مع...

در این مقاله، یک روشی جدید جهت پایداری سیستم های دو بعدی گسسته زمانی تعریف شده با مدل راسر ارائه می‌دهیم، ابتدا سیستم‌های خطی دو بعدی گسسته زمانی مدل راسر معرفی می‌شود، سپس با استفاده از این ویژگی که پایداری سیستم‌های خطی دو بعدی گسسته زمانی، رفتاری مشابه با پایداری سیستم‌های خطی یک بعدی گسسته زمانی هم ارزش را دارد، پایداری سیستم‌های دو بعدی گسسته زمانی راسر را بررسی می‌کنیم. با توجه به اینکه ب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1391

در این پایان نامه با استفاده از نتیجه قضیه درهم بافتن نشان می دهیم که جداساز یک فولرن با n رأس حداکثر 1-3/n می باشد و فولرن دوازده وجهی بزرگترین جداساز و ماکزیمم کوچکترین مقدار ویژه را در کلاس فولرن ها دارد. همچنین با استفاده از نمایش مسطح گراف ها (نمایش هندسی گراف ها) نشان می دهیم که جداساز فولرن ها حداکثر 24/n می باشد. از نتایج دیگر این پایان نامه این است که تعداد گراف فولرن های رامانوجان محد...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان 1388

فرض می کنیم k(x,y) هسته معین مثبت عملگر انتگرال k روی بازه بی کران i باشد. اگر k به کلاس a تعلق داشته باشد، عملگر انتگرال متناظر، فشرده و از کلاس تریس است. تحت شرایطی هسته k با یک سری که همگرای مطلق و همگرای یکنواخت است، نمایش داده می شود که جملات آن از توابع ویژه عملگر k که پیوسته یکنواخت هستند، تشکیل شده است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه 1390

چکیده : این رساله را با مفاهیم وقضایای اساسی آغاز می کنیم . سپس جواب مسئله فرانکل ، در قسمت های بیضوی و هذ لولوی را در نواحی مثلثاتی مورد بررسی قرار می دهیم . به این ترتیب که جواب مسئله را ابتدا در قسمت بیضوی که در ناحیه اول مثلثاتی می باشد را باشروط مرزی داده شده می یابیم . سپس با استفاده از جواب این ناحیه ونیز سایر شروط مرزی جواب مسئله را در قسمت هذلولوی که ناحیه چهارم مثلثاتی می باشد را بررس...

ژورنال: :مکانیک سازه ها و شاره ها 2014
حجت احسنی طهرانی فاطمه انجیلی

در این مقاله، یک روشی جدید جهت پایداری سیستم های دو بعدی گسسته زمانی تعریف شده با مدل راسر ارائه می دهیم، ابتدا سیستم های خطی دو بعدی گسسته زمانی مدل راسر معرفی می شود، سپس با استفاده از این ویژگی که پایداری سیستم های خطی دو بعدی گسسته زمانی، رفتاری مشابه با پایداری سیستم های خطی یک بعدی گسسته زمانی هم ارزش را دارد، پایداری سیستم های دو بعدی گسسته زمانی راسر را بررسی می کنیم. با توجه به اینکه ب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده ریاضی 1392

در این تحقیق مساله مقدار مرزی استورم-لیوویل متقارن l=l(q(x),a,b) شامل یک معادله دیفرانسیل مرتبه دوم از نوع استورم-لیوویل روی یک بازه متناهی به همراه شرایط مرزی تفکیک ناپذیر‎‎ را در نظر می گیریم که در آن ‎ پارامتر طیفی‏، a‎‎‎، ‎‎b‎‎ و ‎‎‎q(x)‎ ‎ حقیقی مقدار و تابع پتانسیل‎q(x)‎ ‎ در بازه متناهی ‎ متقارن مرکزی می باشد‏. در ابتدا در حالتی که تابع وزن برابر یک است‎ به معرفی یک مجموعه از جوابهای اسا...

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه 1393

در این پایان نامه یک روش جدید و سیستماتیک برای حل یک معادله دیفرانسیل جزیی از نوع سهموی و یا هذلولوی با شرایط غیر موضعی مطرح میکردد سپس معادله با استفاده از روش تجزیه ادومیان حل میکردد

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده فیزیک 1393

در این پژوهش به طراحی و ساخت طیف نگار عدسی گرمایی دوپرتویی لیزری پرداخته شده است. پس از طراحی دستگاه، کاربرد آن در مورد اندازه گیری مقادیر فوق العاده کم از مواد شیمیایی مختلف از جمله ماده رنگی مالاچیت گرین، اورانیوم و غیره در حلال های متفاوت، بررسی شده است. همچنین آرایشهای مختلف این طیف نگار نیز طراحی و با یکدیگر مقایسه شده اند. نتایج این پژوهش نشان می دهد که این طیف نگار نسبت به ساختار تک پرتو...

ژورنال: :فرهنگ و اندیشه ریاضی 2011
ایوان گوتمن علیرضا اشرفی غلامحسین فتح تبار فیروزجایی

فرض کنید یک گراف ساده داده شده است. هر مقدار ویژه ماتریس مجاورت این گراف یک مقدار ویژه آن نامیده می شود. انرژی یک گراف عبارت است از مجموع قدرمطلق های مقادیر ویژه آن. دو گراف با انرژی یکسان گرافهای هم انرژی نامیده می شوند. این مقاله به توصیف تاریخی و شرحی از نتایج جدید در این زمینه می پردازد.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید