نتایج جستجو برای: توابع عملگر محدب

تعداد نتایج: 13332  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1393

در این رساله با بررسی خواص توابع صعودی عملگری و محدب عملگری ضمن به دست آوردن خواصی جدید از این توابع، به بیان نامساوی هایی عملگری می پردازیم. به طور خاص، نشان خواهیم داد که هر تابع غیر ثابت صعودی عملگری، اکیدا صعودی عملگری است. پس از آن نامساوی مشهور لونر هایز را بهبود بخشیده و صورت جدیدی برای آن ارائه می دهیم. در ادامه با ایجاد ارتباط بین مثبت بودن حاصلضرب متقارن دو عملگر مثبت و زیر جمعی بو...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده ریاضی 1392

در این پایان نامه ، به بیان تعاریف و قضایای مربوطه به رده توابع مارپیچ می پردازیم ، همچنین با معرفی چند عملگر انتگرال ، شرایطی که عملگرها در رده های مذکور قرار می گیرند را مورد بررسی و مطالعه قرار می دهیم و در واقع شرایطی را برای مارپیچ بودن این عملگرها ارائه می دهیم . همچنین شرایط محدب بودن را به اختصار بیان می کنیم .

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه 1391

در این پایاننامه ابتدا زیر کلاسهایی از توابع محدب و توابع ستاره گون و همچنین تبدیلات ضربگری خاصی ‎را تعریف می کنیم و به کمک خواص شمول توابع تحلیلی و عملگر انتقال، خواص هادامارد و چند خاصیت دیگر در مورد رابطه ی بین خواص شمول زیر کلاسهای خاصی از توابع تحلیلی و یک خانواده از تبدیلات ضربگری تعریف شده توسط خواص هادامارد،مطالعه می کنیم. کارهای این پایاننامه بر اساس مقاله ئ منتشر شده در سال 2010 ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم 1393

عملگرها، توابع تحلیلی و خوش ریخت، از مباحث بسیار مهم در آنالیز هستند که همواره مورد بررسی و مطالعه قرار گرفته اند. در این پایان نامه، با استفاده از خواص ضرب پیچشی، دوگان بعضی از زیرکلاس های $ mathcal{a} $ را تعیین می کنیم. همچنین کران هایی برای شعاع پایداری ضرب پیچشی بعضی از این زیرکلاس ها پیدا می کنیم. علاوه بر این، برای کلاس توابع خوش ریخت دو نوع همسایگی تعریف می کنیم و شرایط کافی برای قرا...

ژورنال: :علوم 0
سید مجتبی دهنوی دانشگاه تربیت معلم اکبر محمودی ریشکانی akbar rishakani researcherمحقق محمد رضا میرزایی شمس آباد mohammad reza shams abad researcherمحقق عین ا... پاشا einolla pasha professorاستاد تمام

عملگر ضرب پیمانه ای به پیمانه توانی از 2 یکی از عملگرهای مورد استفاده در رمزنگاری خصوصا رمزنگاری متقارن می باشد. در این مقاله به بررسی خواص آماری و جبری این عملگر از منظر رمزنگاری پرداخته ایم. در ابتدا توزیع خروجی عملگر ضرب پیمانه ای به پیمانه توانی از 2 را به عنوان یک تابع دودویی برداری محاسبه کرده ایم و پس از آن توزیع توابع مولفه ای آن را به دست آورده ایم. در ادامه با معرفی یک سنج در اندازه گ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه 1391

دراین پایان نامه ابتدا تابع پیروی را تعریف کرده و سپس به تعریف ضرب هادامارد (یا پیچشی) ونماد پوچهامرو زنجیر پیروی p(z,t)می پردازیم. سپس عملگرپیچشی b,c;b) f(z))l_a^? ر ا معرفی می کنیم وچندین نتیجه پیروی وابرپیروی شامل این عملگررا اثبات می کنیم. کارهای این پایان نامه براساس مقاله ئ منتشر شده در سال 2010 جمع آوری ومورد تجزیه وتحلیل قرار گرفته است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده ریاضی 1390

در این رساله در باره کران های تابعک ضریب فیکت- زیگو بحث میکنیم. در مورد توابع ستاره گون و محدب هم و همچین تواب p-ارز نیز بررسی خواهیم کرد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم 1391

تابع تک ارز دو سویی تابع تک ارز و تحلیلی است که در دیسک واحد تعریف شده و معکوس آن {1-}^g=f نیز تک ارز در دیسک واحد می باشد. توابع تک ارز دو سویی f که و پیروی هستند با یک تابع تک ارز که برد آن نسبت به محور حقیقی متقارن می باشد را معرفی کرده و ضرایب اولیه ی آن زا به دست می آوریم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه 1390

در این پایان نامه ابتدا در مورد توابع تک ارز و خواص هندسی آنها و همچنین رابطه ئ این خواص هندسی با شرایط معادل خواص تحلیلی را مطالعه می کنیم. سپس زیر کلاسهای k وs^* (?) که شامل توابع نزدیک به محدب در دیسک واحد u است را تعریف می کنیم وبه کمک خواص پیروی و مشتق توابع تحلیلی خواص شمولیت، برآورد ضریب وقضایای پوششی وچند خاصیت دیگر را در مورد زیر کلاس k_s (?,a,b) مورد بحث وبررسی قرار می دهیم. کارهای ا...

پایان نامه :دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه 1388

فرض کنید xوyفضاهای توپولوژیک باشند.نگاشت t:x?2y را یک چندتابعی و x?x را نقطه ثابت t گویندهرگاه x?tx. اگر e یک فضای باناخ باشدوp زیر مجموعه ای از e یک مخروط و r?? ، در این صورت a:p?p یک عملگر ?-محدب است هرگاه به ازای هر x?p و هر [0?1)t? داشته باشیم a(tx)?t?ax. در این رساله قضایا و نتایج مربوط به وجود و یکتایی نقطه ثابت توابع و چندتابعی های انقباضی، یکنوای ترکیبی، عملگرهای ?-محدب و ?-مقعر، جف...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید