نتایج جستجو برای: گراف رأس اول
تعداد نتایج: 80948 فیلتر نتایج به سال:
باشد. انرژی گراف??,??,··· ,?n ?ال با مقاد?ر و?ژهm رأس وn ?? گراف باg فرض کن?د ?، تعر?ف میشود. در ا?ن پا?اننامه کرانهایی e(g) = |??| + |??| + ··· + |?n| بهصورتg ب?ان میکن?م. دو گراف با تعداد مساوی رأس همانرژی نام?دهn وm برای انرژی گراف بر حسب .میشود، اگر انرژی آنها ?کسان باشد. در ا?ن پا?اننامه رده ای از گرافهای همانرژی میساز?م باشد. در نها?تe(g) > ?n ? ? رأس ابر انرژی گفته میشود، هرگاه انر...
مفهوم احاطه گری در گراف های فازی، هم از نظر تئوری و هم کاربردی، بسیار ارزشمند می باشد. در گراف فازی با مجموعه رئوس ، ، مجموعه احاطه گر فازی نامیده می شود هرگاه هر رأس ، توسط رأسی مانند احاطه شده باشد. در بیشتر مسائلی که تاکنون در مورد احاطه گری در گراف ها مطرح شده است، داده ها و اطلاعات مربوط به مسئله دقیق و مشخص است و وجود رأس ها و یال های گراف به صورت قطعی می باشد. در حالی که در دنیای واقعی م...
فرض کنید u و v دو رأس از گراف g باشند به طوری که با فاصله دو از یکدیگر قرار گرفته باشند وx همسایگی مشترک u و v باشد منظور از یک بالابری در گراف g حذف یا ل های ux و xv و اضافه کردن یال uv می باشد. در فصل اول مفاهیم و مقدمات اولیه گراف که در فصل بعد به آن نیازمندیم را یادآوری می کنیم. در فصل دوم تاثیر بالابریالی روی عدد احاطه گری در گراف ها را به طور کامل بررسی می کنیم. در فصل سوم تاثیرات بالا...
هدف از این پایان نامه معرفی دو گراف وابسته به یک زیرگروه از یک گروه می باشد. در این راستا ابتدا گراف کیلی گروه g وابسته به زیرگروه h را که بنام گراف همرده کیلی معروف است را مورد مطالعه قرار می دهیم که در آن رئوس گراف عبارتند از مجموعه ی تمام همرده های متمایز راست h در g است و رأس hx به رأس hy متصل است, اگر yx^{-1} in hsh که در آن s یک زیرمجموعه از g است. گراف دیگر...
این پایان نامه، مشتمل بر 3 فصل است. در فصل اول تعاریف مقدماتی و قضایای پایه ای را بیان می کنیم. سپس در فصل دوم عدد احاطه ای ضعیفاً همبند و در فصل سوم عدد زیرتقسیم احاطه ای ضعیفاً همبند را بررسی نموده و کران هایی برای آن ها ارائه می کنیم. همچنین مقدار دقیق این پارامتر ها را برای برخی از گراف ها بدست می آوریم. فرض کنید g یک گراف با مجموعه رأس های (v(g و مجموعه یال های (e(g باشد. زیر مجموعه s از رأ...
خواص گراف اول یک گروه متناهی g اطلاعات ارزشمندی درباره ساختار گروه g می دهد. در سال های اخیر، وازیلو و ودوین معیاری هندسی برای مجاورت رئوس در گراف اول هر گروه ساده ناآبلی متناهی بیان کردند . به کمک این معیار، عدد استقلال و عدد 2-استقلال گروه های ساده ناآبلی متناهی و همچنین عدد - استقلال p گروه های ساده ناآبلی متناهی از نوع لی روی میدانی با مشخصه p بدست آمده است. بعلاوه برای هر ...
در این پایان نامه مسأله ماکزیمم جریان در گرافهایی که در آنها یالها و رئوس دارای ظرفیت میباشند مورد بررسی قرار میگیرد. این مسأله برای گرافهای مسطح از اهمیت بیشتری برخوردار است. در حالت کلی اضافه کردن ظرفیت به رئوس، مسأله ماکزیمم جریان را مشکلتر نمیکند و با یک تبدیل ساده میتوانیم ظرفیت رئوس را حذف کنیم. اما این تبدیل مسطح بودن گراف را حفظ نمیکند. بنابراین الگوریتمی در زمان o(nlogn) برای پیدا ک...
در این پایان نامه با استفاده از روش های جبرخطی و نظریه ی ماتریس ها، به مطالعه ی شعاع طیفی گراف ها می پردازیم. هدف ما معرفی کران های جدیدی برای مقادیر ویژه ی گراف ها می باشد. به ویژه، اگر t(g) ماکزیمم مجموع درجات رأس های مجاور با یک رأس در گراف g باشد، بزرگترین مقدار ویژه ی (g)p در نامساوی انتگرال (g)p بزرگتر مساوی (t(g) ) صدق می کند و تساوی برقرار است اگر و تنها اگر g گراف منتظم یا گراف دوبخشی ...
مطالعه ی ساختارهای جبری با استفاده از ویژگیهای گراف، موضوع پژوهشی جالبی در چند دهه ی گذشته بوده است. در این سالها مقالات زیادی چاپ شده است که در آن ها به یک گروه یا یک حلقه (یا در حالت کلی یک ساختار جبری ) یک گراف وابسته شده است. یکی از گرافهای معروف وابسته به یک گروه عبارت است از گراف ناجابجایی که به این صورت تعریف می شود: رئوس این گراف عبارتند از اعضای مجموعه ی اعضای غیرمرکزی و دو رأس مانند x...
فرض کنید $g$ یک گروه متناهی غیریکریخت با یک $p$-گروه دوری ($p$ عدد اول) باشد. گراف الحاق زیرگروه های $g$ را با $delta(g)$ نشان می دهیم. مجموعه ی رئوس این گراف، متشکل از زیرگروه های سره ی $g$ است که در زیرگروه فراتینی قرار ندارند و دو رأس $h$ و $k$ با هم مجاور هستند هرگاه $g=langle h, k angle$. نشان می دهیم که این گراف همبند و قطر آن حداکثر ? است. عدد رنگی و عدد خوشه ای این گراف با هم ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید