نتایج جستجو برای: for box classification classifier

تعداد نتایج: 10496826  

O. Kurama

This paper introduces new similarity classifiers using the Heronian mean, and the generalized Heronian mean operators. We examine the use of these operators at the aggregation step within the similarity classifier. The similarity classifier was earlier studied with other operators, in particular with an arithmetic mean, generalized mean, OWA operators, and many more. The two classifiers here ar...

ژورنال: کومش 2020
Asaad Sajadi, Negar, Borzouei, Shiva, Farhadian, Maryam, Mahjub, Hossein,

Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and  do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

Mahesh Pal Pankaj Chandna Surinder Deswal

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

Journal: :the modares journal of electrical engineering 2006
hosein nezamabadi-pour ehsanollah - kabir

in this paper, the performance of 11 different distances for image retrieval and classification, based on color, shape and texture, is evaluated. the precision-recall measure and the correct classification rate of the k-nn classifier are used to evaluate retrieval and classification performances, respectively. the experimental results for a database of 1000 images from 10 different semantic gro...

In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

Journal: :jundishapur journal of health sciences 0
leila malihi department of electrical engineering, faculty of engineering, shahid chamran university, ahvaz, ir iran karim-ansari asl department of electrical engineering, faculty of engineering, shahid chamran university, ahvaz, ir iran; department of electrical engineering, faculty of engineering, shahid chamran university, ahvaz, ir iran. tel: +98-9166200516, fax: +98-6113336642 abdolamir behbahani department of entomology, school of health, ahvaz jundishapur university of medical sciences, ahvaz, ir iran

conclusions by comparing the results of classification using multiple classifier fusion with respect to using each classifier separately, it is found that the classifier fusion is more effective in enhancing the detection accuracy. objectives through the improvement of classification accuracy rate, this work aims to present a computer-assisted diagnosis system for malaria parasite. materials an...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید