نتایج جستجو برای: فضای مرتب فشرده
تعداد نتایج: 30816 فیلتر نتایج به سال:
فرض کنیم a یک – جبر باناخ و a دوگان دوم a مجهز به ضرب آرنز اول باشد. در این پایان نامه به بررسی وجود برگشت روی a حاصل از توسیع برگشت روی a می پردازیم خصوصا دوگان دوم جبرهای گروهی وابسته به گروه موضعا فشرده ی g مانند luc(g), l1(g) و wap(g) را مورد مطالعه قرار می دهیم.همچنین یک مشخصه سازی از برگشت دلخواه روی جبر گروهی l1(g ) و جبر اندازه ی(g) m وابسته به g را ارایه می دهیم و شرط برابری این برگشت ...
با بررسی قضیه های کلاسیک باناخ-استون، گلفاند-کلموگروف و کاپلانسکی در می یابیم، یک فضای هاسدورف فشرده x منحصراً به وسیله ساختار طولپای خطی، ساختار جبری و ساختار شبکه ای به ترتیب از فضای c(x) تعیین می شوند. در این پایان نامه نشان داده شده است، برای زیر فضاهای نسبتاً عمومی a(x) و a(y) به ترتیب از c(x) و c(y) هر دوسویی خطی t ازa(x) به a(y) به یک همسان ریختی h از x به y منجر می شود که در آن t یک عملگر...
این پایان نامه درچهارفصل تنظیم شده است فصل اول شامل تعاریف فصل دوم شامل مشبکه های باناخ وانواع آن وفصل سوم شامل عملگر وانواع آن ودر فصل چهارم روابط بین عملگر فشرده ضعیف مرتب وعملگر نیم-فشرده بررسی شده است.
در حلقه ی توابع پیوسته ی حقیقی مقدار روی فضای توپولوژی x، هر ایدآل اول مشمول در یک ایدآل ماکسیمال منحصر به فرد است. اگر x فشرده باشد، آن گاه هر ایدآل ماکسیمال به شکل mp برای یک p ? x و شامل همه ی عناصر f ? c(x) است به طوری که f(p) = ? و اشتراک همه ی ایدآل های اول مینیمال در mp مجموعه ی همه ی توابع پیوسته ای است که در یک همسایگی نقطه ی p صفر می شوند. در این پایان نامه عکس بعضی از جزئیات را بررسی...
در این پایان نامه مفاهیم نمایشهای فضای فازی عملگرها و ارتباط آن با مرتب سازی فراموشکار عملگرهای پایه ( نظیر مکان و تکانه یا خلق ونابودی) مطالعه شده است. ضمن مرور مفاهیم و مثالهای روش انتگرالگیری درون نماد ترتیب، برای آن روش مجموعه سیستماتیکی از تعاریف، قضایا و رهیافت ها معرفی شده که امکان کاربرد سیستماتیک آنرا فراهم می کند. هم چنین از مفهوم ترتیب عملگری آنچنان که در مقالات مرتبط با این روش بکار...
می دانیم که حلقه ی توابع پیوسته ی حقیقی مقدار روی یک فضای تیخونوف x با( c(x نشان داده می شود. همچنین این گزاره شناخته شده است که هرگاه x وy دو فضای فشرده حقیقی بوده به طوری که (c(x و (c(y یکریخت باشند، آن گاه x و y همسان ریخت خواهند بود؛ یعنی، (c(x فضای x را معین می کند. محدودیت به فضاهای فشرده حقیقی از این حقیقت که (c(x و( c(vx یکریخت می باشند، ناشی می شود که فضای vx فشرده شده ی حقیقی هویت x...
نشان می دهیم که در رسته ی فضاهای توپولوژی کاملاً مرتب، شبه f – فضاها و تقریباً p – فضاها یکسانند. در فضاهای توپولوژی کاملاً مرتب، p+ - نقطه ها، p- - نقطه وار و به طور طبیعی p+ - فضاها و p- - فضاها را تعریف می کنیم و مثالی از یک p+ - فضای بدون p- - نقطه می-آوریم که همچنین مثالی از یک تقریباً p – فضا بدون p – نقطه است. یک فضای کاملاً مرتب دارای درجه ی سختی شمارش پذیر است اگر و تنها اگر یک فضای دنبال...
رشد فزاینده حجم داده های موجود در پایگاه های اطلاعاتی, نیاز به ساختارهای قدرتمند برای انجام پردازشهای مختلف بر روی اطلاعات ذخیره شونده را بیش از پیش مطرح نموده است. یکی از نیازهای مبرم و پایه ای در بسیاری از کاربردهای پردازش اطلاعات از جمله فشرده سازی, توانایی مرتب سازی سریع داده می باشد. در این پروژه ما به ارائه یک هسته مرتب ساز داده می پردازیم که بر پایه یک روش و معماری نوین قادر است با سرعت ...
در سال 2007 ابطحی نصر اصفهانی و رجالی ثابت کردند اگر g یک گروه توپولوژیک موضعاً فشرده و نافشرده باشد و p < 2 >1آنگاه برای هر همسایگی فشرده k از عضو همانی g توابع f,g موجودند که f*g روی k بینهایت میشود به بیان دیگر f*g به عنوان یک تابع روی g موجود نیست.
در این پایان نامه به معرفی و مطالعه خانواده ای ناانبساطی از عملگرهای غیر خطی یک پارامتری موسوم به خانواده های کسینوسی قویا پیوسته می پردازیم. هدف اصلی ما در این جا تقریب نقطه ثابت مشترک خانواده های کسینوسی ناانبساطی در فضاهای هیلبرت حقیقی است. ما با به کارگیری تصویر متریک بر آلگوریتم مان دنباله ای می سازیم که به طور قوی به نقطه ثابت مشترک خانواده کسینوسی ناانبساطی مورد نظر همگراست.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید