نتایج جستجو برای: مسأله رنگ آمیزی گراف
تعداد نتایج: 33760 فیلتر نتایج به سال:
تعمیم گراف های جهت دار را با مفاهیمی از رنگ آمیزی هارمونیک و رنگ آمیزی کامل در نظر می گیریم. کران بالایی برای عدد رنگی هارمونیک گراف جهت دار ایجاد کرده و نشان می دهیم که تعیین مقدار دقیق عدد رنگی هارمونیک، برای گراف های جهت دار از درجه کراندار (در حقیقت گراف ها با ماکزیمم درجه ورودی و خروجی 2); np-hard است. پیچیدگی در مورد گراف های غیر جهت دار متناظر ناشناخته است. با در نظر گرفتن رنگ آمیزی کا...
یک یک k- رنگ آمیزی بی دور از گراف g یک k-رنگ آمیزی مجاز از g است به طوری که هر زیرگراف القایی g روی دو کلاس رنگی دلخواه از g یک جنگل است. عدد رنگی بی دور یک گراف g مینیمم kای است به طوری که g یک k-رنگ آمیزی بی دور داشته باشد. این پایان نامه، مروری بر پژوهش های انجام شده در رنگ آمیزی بی دور است. در ابتدا عدد رنگی بی دور گراف هایی از جمله گراف های حاصل ضربی شامل شبکه ها، حاصل ضرب درخت ها، اس...
برای یک رنگ آمیزی یالی داده شده با رنگ های {1,2,...,k}، یک رنگ آمیزی راسی از گراف g با رنگ های {1,2,...,k} را سازگار با رنگ آمیزی یالی می گوییم هرگاه برای هر یال از g، رنگ های ظاهر شده روی دو سر آن و رنگ خود یال یکسان نباشند. به کوچکترین k ای که برای هر رنگ آمیزی یالی با kـ رنگ {1,2,...,k} یک رنگ آمیزی سازگار با این رنگ آمیزی یالی و با استفاده از رنگ های{1...
یک گراف را بدون پنجه گوییم هرگاه دارای رأسی نباشد که دارای سه همسایه ی دو به دو نامجاور باشد. در نگاه اوّل، این طور به نظر می رسد که انواع بسیار زیادی از گراف های بدون پنجه وجود دارد. به عنوان مثال، گراف های یالی، گراف بیست وجهی، مکمل گراف های منشوروار و گراف اشلفلی (یک گراف بسیار متقارن زیبا با ?? رأس) را می توان به عنوان نمونه هایی از گراف های بدون پنجه نام برد. به علاوه، اگر رئوس یک گراف ر...
رنگ آمیزی مجازی از گراف g را b-رنگ آمیزی گویند هرگاه هر کلاس رنگی دارای رأسی باشد که این رأس در تمام کلاس های رنگی دیگر همسایه داشته باشد. به بزرگ ترین عدد طبیعی k که گراف g، یک b-رنگ آمیزی با k رنگ داشته باشد، عدد b-رنگی گراف g گوییم و آن را با(?(g نشان می دهیم. در این پایان نامه به بررسی برخی ویژگی ها و قضیه ها در ارتباط با b-رنگ آمیزی گراف ها می پردازیم. ابتدا ارتباط بین اندازه، کمر و قطر با...
رنگ آمیزی برداری متعامد گراف ها چکیده فرض کنید f یک میدان ، s ، a ، b و c زیرمجموعه هایی از f ، d یک عدد صحیح مثبت و تابع f (x , y) یک فرم دوخطی ناتبهگون روی باشد ، یک نمایش برداری از گراف ساده g با رأس های , … , عبارت است از لیست بردارهای , … , متعلق به به طوری که بردار به رأس تخصیص داده شود ، مولفه های هر بردار در s قرار گیرد ، برای هر i و j ،a f ( , ) ، اگر با در g مجاور باشد ، آن گاهb f (...
فرض کنید مجموعه یال_های e(g) باشد. یک k-رنگ_آمیزی رأسی مجاز از گراف g، یعنی تخصیص k رنگ به رئوس g به گونه_ای که رأس_های مجاور هم رنگ نباشند. یک رنگ_آمیزی لیستی تعمیمی از مفهوم رنگ_آمیزی معمولی است، به این ترتیب که به هر یک از اجزای گراف، مجموعه_ی دلخواه از رنگ_ها نسبت داده می_شود و برای رنگ_آمیزی هر جزء باید از رنگ لیست متناظر آن استفاده شود و یک رنگ_آمیزی مجاز برای گراف به_دست آید. لیست ت...
در این پایان نامه ارتباط بین خواص جبری و خواص گرافی, گراف ایده آل پوچ کن حلقه های تعویض پذیر بیان می شود. فرض کنیم r یک حلقه تعویض پذیر و یکدار باشد. در این صورت ایدآل i از r را ایده آل پوچساز می گوییم هرگاه ایده آل ناصفرj از r وجود داشته باشد به طوری که ij=(0). مجموعه ی همه ی ایده آل های پوچ ساز حلقه ی r را با a(r) نشان می دهیم. گراف ایده آل پوچ کن گرافی است با مجموعه رئوس a( r ) ...
رنگ آمیزی کلی کمتر از رنگ آمیزی راسی و یالی مورد مطالعه قرار گرفته است. اما اخیرأ توجه زیادی به حدس دکتر بهزاد درباره رنگ آمیزی کلی شده است, که بیان گر این است که عدد رنگی کلی بزرگ تر از ماکزیمم درجه بعلاوه 2 نیست. در این پایان نامه درستی این حدس رادر مورد گراف های مسطحی که هیچ رأسی از درجه 5 یا بیشتر که روی بیشتر از سه دور به طول 3 قرار دارند, مورد مطالعه قرار می دهیم . عدد استق...
فرض کنید $c$ یک $k$-رنگ آمیزی معتبر از گراف همبند $g$ با کلاس های رنگی $v_1$، $v_2$، $ldots$، $v_k$ باشد. $pi:=(v_1,v_2,...,v_k)$ را افراز مرتب حاصل از این رنگ آمیزی در نظر بگیرید. کد رنگی رأس $vin v(g)$ یک $k$-تائی مرتب است که به صورت زیر تعریف می شود vspace*{3mm} $$c_{{}_pi}(v):=(d(v,v_1),d(v,v_2),ldots,d(v,v_k)).$$ اگر رئوس متمایز $g$ کدهای رن...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید