نتایج جستجو برای: لیوویل
تعداد نتایج: 172 فیلتر نتایج به سال:
حساب کسری، در سالهای اخیر زمینه مطالعات بسیاری از ریاضیدانان قرار گرفته است. مشتق و انتگرال مرتبه کسری کاربردهای فراوانی در فیزیک و مکانیک، از جمله فیزیک پلاسما، مکانیک کوانتومی و دینامیک آشفتگی پیدا کرده اند. همچنین معادلات دیفرانسیل با مشتقات جزیی که شامل عملگرهای کسری باشند، کاربردهای زیادی در علوم مهندسی دارند. با این حال روشهای تحلیلی که برای حل این معادلات وجود دارند اغلب پیچیده و دشوار ه...
در این پایان نامه بسط مجانبی مقادیر ویژه متناظر با مسئله اشتورم-لیوویل منظم را بدست می آوریم که در شرط مرزی و اولیه آن پارامتر λ مستقل از x ظاهر شده است. روش کارمبتنی بر جوابهای مجانبی معادله ریکاتی متناظر است که با روش تراجعی جملات آن مشخص شده اند. در حقیقت هدف ما یافتن جواب مجانبی معادله ریکاتی بر حسب توانهای بزرگتر (1تقسیم برλ√)وقتی ∞→ λ به بینهایت می رود، می باشد.
از لحاظ توسعه روش های حل معادلات دیفرانسیل پاره ای در قرن نوزدهم میلادی با روش جدا سازی متغیرها برای معادلات خطی بوسیله دالامبر،اویلر و سپس کارهای فوریه برای معادله حرارت ادامه یافت که به دنبال آن همگرایی سری های فوریه و انتگرال های فوریه مطرح شد و سپس تابع های هارمونیک حقیقی دو بعدی و توابع مختلط از یک متغیر مختلط در کار های ریمان در سال 1851 گسترش یافت و بالاخره گسترش بیشتر آن ها توسط نویما...
بسیاری از مسائل در علوم و مهندسی به معادلات دیفرانسیل جزئی کسری منجر می شوند. ولی در عمل تعداد کمی از این معادلات را می توان به روش های تحلیلی حل کرد و جواب دقیق آن ها را به دست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آن ها استفاده می کنیم.در این پایان نامه از دو روش آنالیز هموتوپی(ham) و روش آشفتگی هموتوپی(hpm) برای حل معادلات دیفرانسیل جزئی کسری استفاده می کنیم. فصل اول به ار...
در این پایان نامه ابتدا مفهوم حلال کسری را معرفی می کنیم و بعضی ویژگی های آن را بدست می آوریم. قضیه ای را بیان می کنیم که مشخص می کند تحت چه شرایطی یک عملگر خطی می تواند مولد یک حلال کسری بطور نمایی کراندار باشد. در ادامه معادله کوشی کسری همگن از مرتبه ? را مورد بررسی قرار می دهیم و نشان می دهیم این معادله خوش وضع است اگر و تنها اگر عملگر ضریب آن مولد یک حلال کسری از مرتبه ? باشد. سپس بحث وجو...
برای معادله ی اشتورم-لیوویل با پارامترویژه در شرایط مرزی در حالت های اسکالر و ماتریسی، یک فرمول اثر منظم مرتبهی اول را به دست می آوریم. همچنین برای سیستم های شرودینگر روی گراف های متری، ابتدا با کمک قضیه ی روشه، بسط مجانبی مقادیر ویزه ی بزرگ را به دست می آوریم و سپس فرمول اثر منظم را برای سیستم های مذکور با استفاده از روش های مانده در انالیز مختلط به دست می آوریم و در اخر این فرمول ها را برای ب...
در این پایان نامه به حل دستگاه هایی از معادلات دیفرانسیل (خطی و غیر خطی) مرتبه ی کسری تحت مشتق کسری کاپوتو و وجود جواب ها برای نوع خاصی از مسائل مقدار مرزی (bvp) مرتبه اول برای معادلات دیفرانسیل مرتبه ی کسری می پردازیم. بدین منظور ابتدا تعاریف متفاوتی از مشتق ها و انتگرال های کسری مانند گرانوالد- لتنیکوف، ریمان- لیوویل، کاپوتو و ... را ارائه می دهیم.
در این پایان نامه به حل برخی معادلات انتگرال-دیفرانسیل پرداخته می شود. در فصل اول برخی تعاریف و قضایای اولیه مورد نیاز در فصل های آتی بیان می شود. در فصل دوم به طور مختصر در مورد حساب دیفرانسیل و انتگرال کسری صحبت می کنیم، انتگرال ریمان-لیوویل کسری را تعریف کرده و همچنین به تعریف برخی مشتق های کسری از جمله مشتق کسری ریمان-لیوویل و مشتق کسری کاپوتو می پردازیم. در فصل سوم وجود ویکتایی جواب در معا...
در این پایان نامه، معادله دیفرانسل با دو نوع شرایط مرزی غیر مجزا و شرایط مرزی دیریکله مورد مطالعه قرار گرفته است. این پایان نامه شامل سه بخش است که بخش اول شامل تعاریف و قضایای مقدماتی که در بخش های بعد مورد استفاده قرار می گیرد. در بخش دوم عملگر غیر خود الحاق استورم-لیوویل را یا شرایط غیر مجزا مورد مطالعه قرار داده و خواص طیف مشخصه را پیدا کرده و مسئله معکوس و بازیافت عملگرها را از خود داده...
در این پایان نامه، ماتریس های عملیاتی مشتق کسری کاپوتو و انتگرال کسری ریمان - لیوویل چندجمله ای ژاکوبی در نظر گرفته شده است. با استفاده از روش های طیفی و نقطه گذاری با کمک ریشه های چندجمله ای ژاکوبی به حل معادلات دیفرانسیل خطی و غیرخطی می پردازیم. این ماتریس ها به همراه روش تاو مساله اصلی را به یک دستگاه معادلات جبری خطی یا غیرخطی تبدیل می کنند. معادلات دیفرانسیل کسری خطی و غیرخطی از نظر عددی...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید