نتایج جستجو برای: انرژی لاپلاسین گراف
تعداد نتایج: 35416 فیلتر نتایج به سال:
This article has no abstract.
انرژی یک گراف عبارت است از مجموع قدر مطلق مقادیر ویژه ماتریس مجاورت آن گراف. در این پایان نامه ما به چگونگی محاسبه انرژی انواع مختلف گراف ها می پردازیم. درادامه به معرفی انرژی ماتریس لاپلاسین یک گراف پرداخته و برای تعدادی از گراف ها آن را محاسبه می کنیم. در فصل بعد به بررسی محاسبه انرژی یک گراف بعد از حذف یک یا چند یال آن می پردازیم. درپایان کاربرد انرژی گراف ها را در علم شیمی مطرح می نم...
کـمـیـت جـالـب در نـظـریـه ی هـوکـل مجموع انرژی همه ی الکترون های مولکول است. به هر مولکول شیمیایی گرافی نسبت داده می شود به طوری که انرژی این مولکول برابر مجموع قدرمطلق همه ی مقادیر ویژه ی گراف است. انرژی گراف ساده ی gمجموع قدرمطلق مقادیر ویژه ی ماتریس مجاورت این گراف تعریف می شود و با نشان داده می شود. در این پایان نامه کران هایی برای انرژی بر حسب تـعـداد رئـوس و یـال ها و... بـیـان شـ...
انرژی و انرژی لاپلاسین (بدون علامت) کمیت هایی هستند که به ترتیب برحسب مقادیر ویژه و مقادیر ویژه لاپلاسین )بدون علامت ( تعریف می شوند. مقادیر ویژه و مقادیر ویژه لاپلاسین )بدون علامت) گراف g که همان مقادیر ویژه ماتریس مجاورت و ماتریس لاپلاسین (بدون علامت) هستند، اهمیت زیادی در مطالعه ویژگی های گراف دارند. در این پایان نامه سعی بر این است که برخی از کران های انرژی لاپلاسین و لاپلاسین بدون علامت ...
انرژی یک ماتریس برابر با مجموع مقادیر تکین آن ماتریس تعریف می شود. انرژی یک گراف برابر است با مجموع مقادیر ویژه آن گراف، $e(g)=sum^{n}_{j=1}vert lambda_{j}vert$. در این پایان نامه ارتباط میان انرژی یک گراف و انرژی گراف یالی متناظر آن را با توجه به انرژی های لاپلاسین و لاپلاسین بدون علامت را بیان کرده و هم چنین تأثیرات ناشی از حذف یال را بر انرژی گراف بررسی می کنیم....
فرض کنید گراف g یک گراف ساده غیرجهت دار و متناهی باشد. انرژی گراف g به صورت مجموع قدرمطلق مقادیرویژه گراف g تعریف می شود. در این رساله به تعریف و بررسی انرژی لاپلاسین انرژی وقوع و شبه انرژی لاپلاسین ناوردای یک گراف می پردازیم. به علاوه چندین کران برای انرژی های مختلف از یک گراف از جمله گراف خطی را مطالعه می کنیم و بعضی روابط مربوط به گراف های هم انرژی از گراف های هم مرتبه و غیرهم طیف را مورد تو...
در این پایان نامه به مطالعه ی گراف های با تعداد کم مقدار ویژه ی متمایز، نسبت به سه ماتریس مجاورت، لاپلاسین و لاپلاسین فاقد علامت می پردازیم. مطالعه ی گراف ها با تعداد کم مقدار ویژه ی متمایز، نسبت به ماتریس مجاورت، اولین بار توسط دوب در سال 1970 مورد توجه قرار گرفت. اولین بررسی ها در مورد گراف های با تعداد کم مقدار ویژه ی متمایز، نسبت به ماتریس لاپلاسین، توسط ون دام و همرز در سال 1995 انجا م گرف...
گراف n رأسی g=(v,e) در نظر گرفته شده است، منظور از طیف لاپلاسین g، مجموعه ی مقادیرویژه ماتریس لاپلاسین l=d-a، می باشد که d و a به ترتیب ماتریس قطری و ماتریس مجاورت g را نشان می دهند. در این پایان نامه، به مطالعه ی درخت ها و طیف لاپلاسین آن ها می پردازیم و با دقتی بالاتر، کران بالای جدیدی برای مجموع k مقدارویژه ی بزرگ ماتریس لاپلاسین هر درخت n رأسی می یابیم. هم چنین در این پ...
بررسی طیف گراف ها، ابزاری جهت بررسی گراف ها از دیدگاه جبری است. گراف های ds گراف هایی هستند که هیچ گراف غیر یکریخت دارای طیف ماتریس مجاورت یکسان با آنها نباشد. در این پایان نامه به بررسی خانواده گراف های و پرداخته و تحقیق می کنیم که آیا این گراف ها ds هستند یا خیر. در ضمن طیف ماتریس لاپلاسین گراف ها را تعریف و یکتایی گراف ها را تحت طیف ماتریس لاپلاسین بررسی می کنیم و نشان می دهیم که گراف و ...
فرض کنید g گرافی n رأسی باشد. مقادیر ویژ? لاپلاسین بدون علامت و لاپلاسین g که به صورت نزولی مرتب شده اند را به ترتیب با q_1 (g)???q_n (g)?0 و ?_1 (g)????_(n-1) (g)??_n (g)=0, نمایش می¬دهیم. حدسی در مورد مقادیر ویژ? لاپلاسین گراف¬ها بیان می کند که ?_1 (g)-?_(n-1) (g)?n-1 یا به طورمعادل ?_1 (g)+?_1 (¯g)?2n-1 که در آن ¯g گراف مکمل g است. در این رساله، این حدس را برای گراف¬های دوبخشی ثابت می¬کن...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید