نتایج جستجو برای: دسته بندی اهداف سوناری
تعداد نتایج: 109832 فیلتر نتایج به سال:
با توجه به خصوصیات فیزیکی پیچیده ی اهداف سوناری، طبقه بندی و تمیز دادن اهداف واقعی از اهداف کاذب یکی از زمینه های دشوار و پیچیده برای محققان و صنعتگران این حوزه است. با توجه به این ویژگی های اهداف سوناری، روش های هوشمند در دسته بندی این نوع دادگان دارای توانایی های منحصر به فردی می باشند. از این رو در سال های اخیر استفاده از شبکه های عصبی و ماشین بردار پشتیبانی در این زمینه کاربرد فراوانی داشته...
با توجه به خصوصیات فیزیکی بسیار نزدیک اهداف واقعی و کلاترِ سونار فعال، تفکیک این اهداف، از موضوعات چالشبرانگیز محققان و صنعتگران حوزه آکوستیک میباشد. شبکههای عصبی چندلایه (MLP) یکی از پرکاربردترین شبکههای عصبی در دستهبندی اهداف دنیای واقعی هستند. آموزش از مهمترین بخشهای توسعه این نوع شبکه ها است که در سالهای اخیر بسیار مورد توجه قرار گرفته است. به منظور آموزش شبکههای MLP از دیر باز استف...
با توجه به اینکه دادگان سوناری دارای ابعاد بالا و بهینه های محلی زیادی می باشند، دسته بندی کننده های متعارف توانایی دسته بندی مناسب این گونه اهداف را ندارند. استفاده از ترکیب بهینه ساز ازدحام ذرات (pso) و شبکه های عصبی مصنوعی (ann) یکی از راه حل هایی است که در چند سال اخیر برای غلبه بر این مشکل موردتوجه قرار گرفته است. در کاربرد دادگان با ابعاد بالا، الگوریتم pso دارای دو مشکل به دام افتادن در ...
با توجه به خصوصیات فیزیکی بسیار نزدیک اهداف واقعی و کلاترِ سونار فعال، تفکیک این اهداف، از موضوعات چالش برانگیز محققان و صنعت گران حوزه آکوستیک می باشد. شبکه های عصبی چندلایه (mlp) یکی از پرکاربردترین شبکه های عصبی در دسته بندی اهداف دنیای واقعی هستند. آموزش از مهمترین بخش های توسعه این نوع شبکه ها است که در سال های اخیر بسیار مورد توجه قرار گرفته است. به منظور آموزش شبکه های mlp از دیر باز استف...
با توجه به خصوصیات فیزیکی پیچیدهی اهداف سوناری، طبقهبندی و تمیز دادن اهداف واقعی از اهداف کاذب یکی از زمینههای دشوار و پیچیده برای محققان و صنعتگران این حوزه است. با توجه به این ویژگیهای اهداف سوناری، روشهای هوشمند در دستهبندی این نوع دادگان دارای تواناییهای منحصر به فردی میباشند. از اینرو در سالهای اخیر استفاده از شبکههای عصبی و ماشین بردار پشتیبانی در این زمینه کاربرد فراوانی داشت...
نویز محیطی اقیانوس یک ویژگی مهم آکوستیکی است که از عوامل مؤثر و مهم در کاهش عملکرد سیستمهای سونار است. نویز محیطی تحت تأثیر عواملی از قبیل وضعیت سطح (مانند مواج بودن، سرعت باد و...)، فضای بالای سطح، تغییرات و ساختار پوسته زمین در کف، رفتار جانوران آبزی و بهویژه نویزحاصل ازکشتیرانی است.استفاده از راهحل شکلدهی پرتو برای حذف نویز برای افزایش کارایی سیس...
This paper investigates an underwater noise target classification algorithm in order to identify vessels in shallow water. To this aim the Hilbert Huang transform has been used to extract features in order to be used in a classifier. The Support Vector Machine has been considered to identify targets. The proposed method based on Hilbert Huang Transform shows considerable gain against similar ap...
با توجه به پیچیدگی فیزیکی اهداف سوناری و شباهت بسیار زیاد کلاتر با اهداف واقعی در سونار فعال، دستهبندی آنها یکی از مسایل چالشبرانگیز برای پژوهشگران و صنعتگران این حوزه است. شبکههای عصبی چندلایه، یکی از پرکاربردترین ابزار در دستهبندی اهداف واقعی میباشند. میتوان از آموزش به عنوان مهمترین بخش این شبکهها اشاره نمود. در سالهای اخیر استفاده از الگوریتمهای تکاملی برای آموزش این نوع شبکهه...
دستهبندی اهداف سوناری بهدلیل پیچیدگی فیزیکی و شباهت بسیار زیاد کلاتر با اهداف واقعی در سونار فعال، یکی از مسایل چالشبرانگیز برای پژوهشگران این حوزه است. شبکههای عصبی ادراکی چندلایه، یکی از کارآمدترین ابزار در دستهبندی اهداف میباشند. از آموزش میتوان به عنوان مهمترین بخش این شبکهها اشاره نمود که دقت دستهبندی را تا حد زیادی کنترل مینماید. در سالهای اخیر استفاده از الگوریتمهای فراابتکا...
امروزه با افزایش حجم داده ها امکان جمع آوری و دسته بندی سریع داده ها توسط انسان غیرممکن شده است و نیاز به دسته بندی و تحلیل دادها به صورت خودکار از جایگاه ویژه ای برخوردار است. دسته بندی داده ها عملیاتی است که ابتدا، طی یک فرایند ، نمونه های آموزشی به همراه برچسب آن ها به یک عامل یادگیر داده می شود تا ارتباط بین نمونه ها و برچسب ها را یاد بگیرد و سپس برچسب داده های آموزشی را پیش بینی کند. از ط...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید