نتایج جستجو برای: متر مخروطی فضای برداری توپولوژیک

تعداد نتایج: 76449  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده علوم پایه 1393

فضاهای متریک مخروطی با جایگزین کردن مجموعه اعداد حقیقی با یک فضای باناخ مطرح و قضایای بسیاری در مورد آن ثابت شده است. به عنوان تعمیمی از فضاهای متریک مخروطی، توسط برخی نویسندگان فضای باناخ فوق الذکر با یک فضای توپولوژیک برداری جابه جا شده است. با این تعمیم طیف گسترده تری از فضاهای مخروطی به دست می آید. در این پایان نامه به مطالعه این نوع فضاهای مخروطی پرداخته شده و چندین مقاله جدید در این خصوص ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - دانشکده علوم 1390

فضای متریک مخروطی تعمیمی از فضای متریک معمولی می باشد که در قرن بیستم معرفی شده است. تا کنون قضایای نقطه ثابت و نقطه ثابت مشترک متعددی در فضای متریک مخروطی اثبات و ارائه شده است. در این پایان نامه با جایگزین کردن فضای برداری توپولوژیک به جای فضای باناخ حقیقی در مجموعه مقدار متر مخروطی,‎ ‎تعمیمی‎ از فضای متریک مخروطی را بیان می کنیم که با عنوان فضای متریک مخروطی برداری توپولوژیک معرفی گردیده...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی 1393

در این پایان نامه، به بررسی مفهوم فضاهای متریک مخروطی جبری می پردازیم و ویژگی های مهمی از آن ها را می آوریم. هم چنین مفاهیم متر مخروطی و نرم مخروطی و خواص آن ها را به تفصیل بررسی می کنیم. فضاهای متریک مخروطی جبری از دیدگاه نظری بسیار مشابه فضاهای متریک معمولی هستند، با این تفاوت که مقادیر متر آن ها در یک فضای باناخ مرتب قرار می گیرد. از این نظر، فضاهای متریک مخروطی جبری تعمیم گسترده ای از فضاه...

پایان نامه :دانشگاه تربیت معلم - سبزوار - دانشکده علوم ریاضی و مهندسی کامپیوتر 1389

در این پایان نامه ابتدا به معرفی انواع فضاهای متریک مخروطی پرداخته ایم. سپس برخی قضایای نقطه ثابت که در فضای متریک ثابت شده اند، از جمله اصل انقباض باناخ، را در فضای متریک مخروطی نرمال اثبات می کنیم. در ادامه نشان می دهیم فرض نرمال بودن برای بسیاری از این قضایا ضروری نیست. در فصل دوم، قضیه ای را ثابت می کنیم که نقطه ثابت مشترک سه درون ریختی روی فضای متریک مخروطی را بدون فرض پیوستگی آنها به دست...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1391

در این رساله، به بررسی عملگرهای خطی کراندار و فشرده بر روی فضاهای برداری توپولوژیک و همچنین، همسانی های کراندار، کراندار کلی، و فشرده بر روی حلقه های توپولوژیک می پردازیم. در واقع، خواصی چون جبر توپولوژیک بودن و کامل بودن را برای رده های متفاوت از عملگرهای خطی کراندار بر روی یک فضای برداری توپولوژیک مورد بررسی قرار می دهیم. همچنین، روابطی را بین عملگرهای خطی کراندار و عملگرهای فشرده بر روی یک ف...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر 1393

گیریم ( x, t) یک فضای توپولوژی باشد و x ? a. گوییم x به ?- بستار a متعلق است و می نویسیم x ? cl?a، هرگاه هر همسایگی بسته ی x مجموعه ی a را قطع کند. جفت (x, cl?) را یک فضای بستاری یا یک فضای همسایگی می نامیم. هرگاهa = cl?a ، آن گاه زیرمجموعه ی a را ?- بسته گوییم. مجموعه های ?- بسته، مجموعه های بسته در مجموعه ی xهمراه با توپولوژی جدید t? خواهند بود. توپولوژی نیم- منظم شده یt را با t?نشان می دهیم...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز - پژوهشکده علوم 1392

در این پایان نامه ضمن معرفی فضای نرم دار مخروطی، به بررسی برخی خواص توپولوژیکی و هندسی این فضا پرداخته شده است. در فصل اول، کلیات و معرفی متر مخروطی روی فضای برداری یکپارچه و تعاریفی که در ادامه کار به آنها نیاز است آورده شده است. در این فصل نشان داده شده است که یک فضای برداری مجهز به یک ترتیب ?یکپارچه است اگر وتنها اگر به یک ترتیب برداری اکید مجهز باشد. در فصل دوم نرم مخروطی معرفی گردیده و خوا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - پژوهشکده علوم 1389

اخیراً دو ریاضیدان چینی به اسم هانگ و ژانگ باجایگزین کردن فضای باناخ حقیقی به جای اعداد حقیقی، مفهوم متر مخروطی را معرفی کردند و قضایای نقطه ثابت را برای فضای متریک مخروطی، با استفاده ازایده های قضایای نقطه ثابت در فضای متریک کامل تعمیم دادند. در این پایان نامه، هدف بررسی یافته های این دو ریاضیدان چینی و ریاضیدانان دیگری است که فضای متریک مخروطی را از نظر خواص توپولوژیکی و خواص مخروطی مورد مطالع...

پایان نامه :دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده ریاضی 1391

در این پایان نامه فرض می کنیم x یک مجموعه ناتهی و e یک فضای باناخ حقیقی مرتب و p یک زیر مجموعه بسته و ناتهی از e در اینجا با جایگزین کردن فضای باناخ حقیقی مرتب با اعداد حقیقی متریک مخروطی را معرفی می کنیم. در این پایان نامه نشان می دهیم که هر فضای متریک مخروطی یک فضای توپولوژیک شمارای اول است. در اینجا خلاصه ای از نگاشت های یکنوای آممیخته را مطرح میکنیم و انطباق زوج ها و قضیه های نقطه ثابت مشتر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده علوم پایه 1392

با توجه به اینکه خواص پایه ای فضاهای متریک از اعمال جبری اعداد حقیقی بدست می آید ، این ایده کاملا طبیعی است که در فضاهای متریک به جای اینکه برد تابع متریک در r قرار گیرد در یک فضای برداری ( و یا باناخ ) قرار گیرد . این ایده برای اولین بار توسط هانگ و زانگ تحت عنوان فضاهای متریک مخروطی به طور رسمی مطرح گردید و پس از آن ریاضیدانان زیادی به آن علاقه نشان داده و مباحث مختلف مطرح شده در فضاهای متریک...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید