نتایج جستجو برای: شبکه عصبی خود سازمانده
تعداد نتایج: 180724 فیلتر نتایج به سال:
امروزه استفاده ی روز افزون از تجهیزات الکترونیکی و بارهای غیر خطی در سیستم قدرت، مسئله کیفیت توان را به یک موضوع مهم تبدیل کرده است. در این مقاله برای شبیه سازی وقایع کیفیت توان به طور همزمان از دو روش مدل سازی ریاضی و داده های حاصل از شبیه سازی با نرم افزار Pscad استفاده شده است. با توجه به عملکرد بسیار خوب شبکه های عصبی در کارهای تشخیص الگو و طبقه بندی، شبکه عصبی چند لایه برای طبقه بندی وقایع...
یکی از جنبه های حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانه ای میباشد. هدف این مطالعه ارزیابی عملکرد مقایسه ای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود میباشد. مدلها براساس آمار 104 حادثه وقوع همزمان ثب...
هدف از مهندسی شبکه های عصبی بررسی معایب و مزایای شبکه های عصبی مصنوعی و ارایه روشهایی برای بهبود کارایی آنهاست. یکی از موضوعات مورد بحث در مهندسی شبکه های عصبی چند لایه، یافتن ساختار مناسب(نزدیک به بهینه) برای حل مسئله می باشد. معیار و نحوه انتخاب اندازه شبکه عصبی برای یک مسئله خاص هنوز شناخته شده نیست. در روشهای کلاسیک،طراح شبکه در ابتدای آموزش ساختاری را برای شبکه تعیین و سپس شبکه را آموزش می...
با توجه به اهمیت پیشبینی جریان رودخانه در مدیریت منابع آب روشهای مختلفی برای مدل کردن جریان رودخانهها بکار برده میشوند. تا بتوان با بکارگیری این مدل در مدیریت خشکسالی و سیلاب خسارات ناشی از آنها را به حداقل ممکن رساند. در این مطالعه نیز برای پیشبینی سری زمانی جریان روزانه ایستگاه ونیار، با توجه به ویژگیهای غیرخطی مقیاسهای زمانی چندگانه، مدل هیبرید شبکه عصبی و موجک پیشنهاد شده است. برا...
چکیده شبکه عصبی با تاخیر زمانی، یک ابزار مدلسازی برگرفته از محاسبات هوشمند است که در کنار روشهای کلاسیک برای پیشبینی سریهای زمانی مالی بکار گرفته میشود. این مدل اغلب در مواردی که از سری زمانی دادههای فراوان، اما از ساختار مدل اطلاعات محدود وجود دارد، استفاده میشود، از این رو انتخاب ساختار و ارزیابی آن خود یک چالش است.در این مقاله یک مدل مبتنی بر شبکه عصبی با تاخیر زمانی برای پیشبینی مع...
شاخص بازار سرمایه به عنوان دماسنج اقتصادی هر کشور میباشد. از این رو پیشبینی این متغییر جهت اخذ دید کلی از وضعیت اقتصادی و اخذ استراتژیهای سرمایهگذاری، یکی از مسائل مهم به شمار میرود. از جمله روشهای پیشبینی پرکاربرد در سریهای زمانی مالی، شبکه عصبی میباشد که با توجه به جامعیت این روش و عدم وجود برخی از پیشفرضها در خصوص دادهها، گسترش زیادی نسبت به روشهای آماری یافته است. اما وجود نو...
سرمازدگی یکی از مهمترین مخاطرات جوی است که خسارات زیادی را به محصولات کشاورزی وارد میکند. یکی از راههای مدیریت و کاهش خسارتهای ناشی از سرمازدگی، پیشبینی دمای کمینه است. بهاینمنظور، با استفاده از آمار روزانه پارامترهای کمینه دما، بیشینه دما و دمای نقطه شبنم در دوره آماری 2009- 2005، کمینه دمای روز بعد در چهار ایستگاه با اقلیمهای متفاوت توسط مدل رگرسیونی لیناکر و شبکه عصبی مصنوعی پرسپترون...
پیشرفتهای اخیر در کشاورزی دقیق سبب شده است تا مدل های قابل انعطاف مختلفی جهت پیش بینی، طبقهبندی و تهیه نقشههای دقیق از جمعیت علفهای هرز به منظور کنترل متناسب بامکان آنها ارائه شود. این پژوهش به منظور پیش بینی الگوی پراکنش جمعیت علف هرز تلخه با استفاده از شبکه عصبی بردار چندی ساز یادگیر(lvqnn) در سطح مزرعه انجام شد. داده های مربوط به تراکم جمعیت علف هرز تلخه از طریق نمونه برداری بر روی یک ش...
کاهش و کنترل ریسک اعتباری به عنوان یکی از عوامل موثر در بهبود فرآیند اعطای اعتبار و درنتیجه در عملکرد بانک ها مطرح گردیده و نقش اساسی در تداوم ارائه تسهیلات، سودآوری و بقای بانک ها و موسسات مالی ایفا می نماید. در این راستا، پژوهش حاضر سعی در ارائه رویکردی نو برای ارزیابی ریسک اعتباری مشتریان بانکی دارد. روش شبکه عصبی به عنوان طبقه بندی کننده ی اصلی مشتریان تسهیلات بانکی با یک روش انتخاب ویژگی پ...
هدف اصلی این مطالعه پیش بینی میزان مصرف انرژی الکتریکی در بخشکشاورزی است. برای این منظور از روشهای سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه ی عصبی مصنوعی استفاده شد. به منظور انجام بررسی، از دادههای سالانه ی دوره ی 1346 تا 1383 برای برآورد و آموزش مدلها و از دادههای دوره ی 1384 تا 1387 به منظور بررسی قدرت پیشبینی مدلهای مختلف استفاده شد. در این مطالعه معیارهای ارزیابی مختلفی ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید