نتایج جستجو برای: عملگرهای هیلبرت اشمیت

تعداد نتایج: 2414  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1393

در این پایان نامه، ابتدا تعاریف و خواصی از فضاهای هیلبرت، ‎c*-جبرها، حاصل ضرب تنسوری جبری و‎‎c*-مدول های ‎ هیلبرت را بیان می کنیم. سپس به بررسی تابعک های خطی مثبت، نگاشت های مثبت و نگاشت های کاملاً مثبت رویc*-جبرها پرداخته و دو قضیه ی اساسی در زمینه ی نگاشت های کاملاً مثبت بیان خواهیم کرد؛ قضیه ی اشتین اشپرینگ که یک نمایش مشخص از نگاشت های کاملاً مثبت رویc*-جبر ها به جبر عملگرهای کراندار روی فضاه...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر 1391

چکیده:دراین پایان نامه ،ابتدابه مطالعه وبررسی برخی ازنامساوی هابرای عملگرهای خطی کران دارنرمال والحاقی های آن ها درفضای هیلبرت مختلط بااستفاده ازروش های کلاسیک ونوین منسوب به افرادی مانند:بوزانو،دراگمیر،هیل،دانکل-ویلیامز،گلدشتاین ودیگرنویسندگان می پردازیم.همچنین برخی خواص مربوط به بردعددی عملگرهای نرمال مانندشعاع عددی وشعاع طیفی رابیان کرده ونکاتی رادرموردآن هاذکرمی کنیم.یکی ازاساسی ترین وکاربر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1388

در این پایان نامه به بررسی نگاشت های نگهدارنده عملگرهای فردهولم و شبه فردهولمدر فضاهای هیلبرت و*c -مدولهای هیلبرت می پردازیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی 1391

در این پایان نامه سه نامساوی شعاع عددی برای عملگرهای فضای هیلبرت ارایه می کنیم.این نامساوی ها از نامساوی های شعاع طیفی برای عملگرهای فضای هیلبرت الهام گرفته شده اند به همین دلیل در فصل مجزایی به این نامساوی ها نیز پرداخته شده است. در فصل های بعدی با استفاده از ویژگی های شعاع عددی این نامساوی ها برای شعاع عددی ارایه و اثبات می شوند و در ادامه کاربردهایی از این نامساوی ها بیان می شود.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه 1389

ابتدا هیلبرت c*-مدول های شمارا مولد تعریف میشود.بدین جهت ابتدا c*-جبر را تعریف میکنیم.عناصر خاصی از آن مثل تصاویر معرفی میشوند.مفهوم قاب ها را برای هیلبرت c*-مدول های شمارا مولد باز میکنیم.عملگرهای الحاقی پذیر پوشا مطالعه میشوند و ارتباط بین پوشایی و کرانداری بررسی میشود.اثر عملگرهای الحاقی پذیر پوشا بر قابها به صورت یک قضیه بررسی میشود. عملگرهای فشرده و c*-جبر متشکل از آن بررسی میشود.اگر ( k(...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1392

در این رساله به بررسی روش های مبتنی بر فضای هیلبرت هسته بازتولید در حل معادلات با مشتقات جزیی می پردازیم. این روش ها به دو دسته نمادین و عددی تقسیم می گردند. در روش های نمادین، تابع جواب به شکل یک سری در فضای هیلبرت هسته بازتولید نمایش داده می شود. در این روش ها‏، یا توابع پایه متعامد یکه را توسط فرایند متعامدسازی گرام-اشمیت تولید و به عنوان توابع آزمون در تقریب تابع جواب مورد استفاده قرار ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز 1389

در این پایان نامه دنباله های عملگرهای ترکیبی روی فضای هاردی هیلبرت بررسی شده است.در واقع نشان داده شده است که همگرایی دنبالهای از خودنگاشتهای تحلیلی روی دیسک واحد همگرایی دنباله عملگرهای ترکیبی القایی را ایجاب می کند.

پایان نامه :دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر 1393

در این پایان نامه *c-مدول های هیلبرت با بعد متناهی را بررسی می کنیم. ابتدا *c-مدول های هیلبرت را تعریف کرده و سپس به تعریف فضاهای <l(v)،k(v,w)،<v,v و عملگر الحاق پذیر برای *c-مدول های هیلبرت v,w می پردازیم. در ادامه با ارائه قضایای اساسی مشخصه ای برای *c-مدول های هیلبرت با بعد متناهی به دست می آوریم و سپس *c-مدول های هیلبرت با بعد متناهی را با همگرایی دنباله های مشخص به طور کامل تو صیف کرده و د...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز 1390

در این پایان نامه، ابتدا در زمینه ی عملگرهای خطی و کراندار در فضای هیلبرت که قابل تجزیه به صورت حاصل ضرب دو عملگر خودالحاق هستند، به بررسی می پردازیم و نشان می دهیم یک عملگر نرمال می تواند به حاصل ضرب دو عملگر خودالحاق تجزیه شود اگر و تنها اگر متشابه عملگر الحاقی خود باشد. علاوه بر این مفهوم عملگر خودالحاق تعمیم یافته را که در فضای هیلبرت مختلط تعریف شده است به همراه قضایائی در این باب، ارائه خ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1387

در این پایان نامه برخی از نامساوی های عددی را برای عملگرهای فشرده بررسی می کنیم. اگر چه توسیعی از کارهای مربوط به نامساوی های عملگری بویژه توابع یکنواعملگری و محدب عملگری وجود دارد اما نتایج بیشتری در مورد نامساوی های عملگری بواسطه ی طیف یا مقادیر ویژه بدست می آیند. تامسون اولین نامساوی اساسی، یعنی نامساوی مثلث را برای ماتریس های مختلط n*n اثبات نمود. نتایج تامسون توسط آکمان-اندرسن و پدرسن به ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید