نتایج جستجو برای: فضای متریک جزیی
تعداد نتایج: 29700 فیلتر نتایج به سال:
در این پایان نامه فضای 2-متریک را مورد بررسی قرار می دهیم و وجود نقاط ثابت یا خط ثابت را با استفاده از اصل انقباض باناخ روی این فضاها مورد بررسی قرار می دهیم.
نظریه نقطه ثابت یکی از پر کابردترین ابزارهای انالیز غیرخطی می باشد. دراین نظریه نتایج مختلفی روی فضاهای متریک ثابت شده است و در طول چند دهه گذشته بسیاری سعی نمودند کشابه این قضایا را روی برخی فضاهای تعمیم یافته همچون فضاهای متریک مخروطی، شبه متریک و متریک جزیی بررسی کنند در این پایان نامه برخی نتایج قضایای نقطه ثابت روی فضاهای متریک جزی را بررسی می کنیم و با تئجه به مقاله ای که در سال 2013 چاپ ...
در این پایان نامه، برخی نتایج نقطه ثابت، بخصوص چند نتیجه غیر کلاسیک را بررسی خواهیم نمود. فرض کنید (x,d) یک فضای متریک و t یک خود نگاشت روی x و x_0 نقطه ثابت t باشد. بدیهی است که به ازای هر عدد طبیعی n ، x_0 نقطه ثابت t^n نیز هست. نکته جالب این است که عکس موضوع برقرار باشد، یعنی اگر به ازای یک عدد طبیعی m، x_0 نقطه ثابت t^m باشد، آن گاه x_0 نقطه ثابت t نیز باشد. در این راستا، مفهوم خ...
اخیراً دو ریاضیدان چینی به اسم هانگ و ژانگ باجایگزین کردن فضای باناخ حقیقی به جای اعداد حقیقی، مفهوم متر مخروطی را معرفی کردند و قضایای نقطه ثابت را برای فضای متریک مخروطی، با استفاده ازایده های قضایای نقطه ثابت در فضای متریک کامل تعمیم دادند. در این پایان نامه، هدف بررسی یافته های این دو ریاضیدان چینی و ریاضیدانان دیگری است که فضای متریک مخروطی را از نظر خواص توپولوژیکی و خواص مخروطی مورد مطالع...
این پایان نامه شامل سه فصل است. در فصل اول با تعاریف اولیه آشنا شده در فصل دوم قضایای نقطه ثابت را روی توابع انقباضی تعویض پذیر و همچنین مجموعه های فازی دارای خاصیت n به اثبات میرساتیم. در فصل سوم نیز نقاط ثابتی برای نگاشت های انقباضی روی مجموعه های مرتب جزئی و همچنین توابعی که دارای خاصیت یکنوای مرکب هستند، بدست می آوریم.
با توجه به اصل انقباض باناخ نقطه ثابت مشترک را برای نگاشتهای سه تایی در فضای متریک کامل تعمیم یافته بدست می اوریم.
در این پایان نامه ابتدا مفهومی ازf-متریک به عنوان نگاشتی با فاصله تابع مقدار، روی مجموعه x معرفی می شود و نظریه فضاهای $f$-متریک بررسی میشود. نشان می دهیم که هر فضای متریک می تواند به عنوان یک فضای f-متریک تلقی شود و هر فضای f-متریک می تواند به عنوان یک فضای توپولوژیک در نظر گرفته شود. علاوه بر این نشان می دهیم که رسته ی موسوم به گسترش یافته فضاهای -fمتریک، شامل رسته ی فضاهای متریک اس...
در این پایان نامه ابتدا فضاهای متریک مخروطی را معرفی کرده سپس برخی از قضایای نقطه ثابت از نگاشت های انقباضی روی فضاهای متریک مخروطی را ثابت کردیم.هم چنین مفهوم یک نگاشت ترکیب g-یکنوا را بیان کرده و بعضی از قضایای نقطه ثابت مشترک دوتایی و نقطه تصادفی دوتایی را برای نگاشت های انقباضی غیر خطی در فضاهای متریک کامل مرتب جزیی ارایه می دهیم. در ادامه برخی از نتایج نقطه ثابت را برای نگاشت های روی فضاها...
نظریه نقطه ثابت برای انقباض های مجموعه – مقدار توسط نادلر آغاز شد. این نظریه سپس توسط ریاضی دانان بسیاری بسط و گسترش یافت. در این پایان نامه مفهوم انقباض های مجموعه – مقدار در فضاهای متریک معرفی می شود و به بررسی شرایطی می پردازیم که لزوم وجود یک نقطه ثابت را برای چنین نگاشت هایی تضمین می کند.
فضای x را در نظر می گیریم. اگر برای زیرمجموعه های دلخواه a و b از x که a شمارا و b از رسته اول باشد هومئومورفیسم f: x → x وجود داشته باشد به قسمی که ∅=f(a)∩ b آنگاه می گوییم فضای x خاصیت تفکیک دارد و یا به طور خلاصه می گوییم x یک فضای sp است. در این پایاننامه فضاهای sp را مورد مطالعه قرار می دهیم. فضای توپولوژیک x را در نظر می گیریم. اگر برای هر x,y∋x هومئومورفیسم f:x→xوجود داشته باشد که f(...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید