نتایج جستجو برای: جبر باناخ جابجایی
تعداد نتایج: 10170 فیلتر نتایج به سال:
هدف اصلی ما در این پایان نامه بررسی میانگین پذیری جبر باناخ a نسبت به مشخصه (یعنی همومورفیسم مختلط ?:a ? c) می باشد.پس از معرفی ?- میانگین پذیری شرایطی هم ارز با وجود یک ?- میانگین برای جبر باناخ a ارائه کرده و همچنین شرایط لازم برای اینکه جبر باناخ a دارای- ? میانگینی از نرم یک باشد را بررسی می کنیم و سرانجام ?-میانگین پذیری را روی جبر های باناخ کامل ضعیف دنباله ای مطرح کرده و به ارتباط بین ?-...
در این پایان نامه ابتدا در فصل اول تعاریف و قضایای مقدماتی مورد نیاز را بیان می کنیم سپس در فصل دوم به ارتباط میان میانگین پذیری جبر باناخ a و دوگان دوم آن یعنی جبر باناخ a^(**) می پردازیم و نشان می دهیم در حالت کلی میانگین پذیری جبر باناخ a^(**) ، میانگین پذیری a را نتیجه می دهد و نیز با اضافه کردن مفروضات دیگری به فرض میانگین پذیری ضعیف جبر باناخ a^(**) ، میانگین پذیری ضعیف a را نتیجه می گیری...
میانگین پذیری دوگان دوم یک جبر باناخ aمیانگین پذیری جبر باناخaرا نتیجه می دهد.اما تاکنون مثالی ارائه نشده است که نشان دهد میانگین پذیری ضعیف دوگان دوم جبر باناخ aمیانگین پذیری ضعیف aرا نتیجه ندهد.این ویژگی برای جبر گروهی (l1(gو جبرهای فوریه (a(gزمانی که gیک گروه میانگین پذیر باشد ثابت شده است.همچنین برای جبر باناخa زمانی که a منظم آرنز باشد و هر اشتقاق از a به *aفشرده ضعیف باشد و همچنینa یک اید...
فرض کنید a و b دو جبر باناخ باشند. نگاشت ? از a بروی b را طیف- نگهدار گویند هرگاه، برای هر a از جبر a داشته باشیم؛ (a) ? = (?(a)) ?. به این سوال باز که از تحقیقات کاپلانسکی نشأت می گیرد و توسط آپتیت به این فرم در آمده است توجه کنید. آیا یک نگاشت خطی دوسویی طیف- نگهدار بین جبرهای باناخ نیم ساده یک دار لزوماً یک همریختی جردن است؟ حتی در مورد c* _ جبرها جواب ناشناخته است. در صورتی که می دانیم، در ...
بعد از پرداختن به کلیت مفهوم میانگین پذیری و کرکتر میانگین پذیری برای جبرهای باناخ و میانگین پذیری درونی برای جبرهای لائو مفهوم کرکتر میانگین پذیری درونی را برای جبر باناخ دلخواه a تعریف و مطالعه می کنیم. چندین مشخصه از کرکتر میانگین پذیری درونی جبرهای باناخ نیز بیان می شوند. کرکتر میانگین پذیری درونی برای کلاس مشخصی از جبرهای باناخ شامل ضرب تانسور تصویری دو جبر باناخ a و b و ضرب لائو a و b و گ...
فرض کنید g یک گروه آبلی موضعاً فشرده با اندازه ی هار و x یک فضای باناخ و a یک جبر باناخ جابه جایی x- مدول باشد. هم چنین فرض کنید یک تابع وزن بر روی g باشد. در این پایان نامه ابتدا جبر باناخ ، و را برای درنظر گرفته سپس مضارب بر روی آنها را مورد بررسی قرار می دهیم. واژه های کلیدی: گروه آبلی موضعاً فشرده ، جبر باناخ ، مضارب ، وزن
دانشجویان کارشناسی ارشد ریاضی محض- آنالیز در دروس خود با فضاهای باناخ وهیلبرت آشنایی بیشتری پیدا می کنند. برای درک بهتر قضایا و مطالب مربوط به این فضاها، ارائه هر چه بیشتر مثال ها، کمک بیشتری در زمینه این شناخت، مهیا می کند. این پایان نامه شامل سه فصل است که در فصل اول تعاریف مقدماتی و مطالبی در خصوص فضای باناخ ارائه می شود، در فصل دوم نیز به معرفی فضای هیلبرت می پردازیم، و در فصل سوم مطالبی در...
در این پایان نامه جبرهای باناخ دوگان را معرفی و پیش دوگان های آنها را مطالعه می کنیم. در ادامه به بررسی رده ی خاصی از جبرهای باناخ دوگان یعنی جبرهای اندازه ی گروهی برای گروه های فشرده ی موضعی می پردازیم و یک پیش دوگان خاص منحصر به فرد را برای آنها ارائه می کنیم. همچنین به دنبال آن هستیم که یک محک ساده را که توسط آن جبر ضربگری یک جبر باناخ به جبر باناخ دوگان تبدیل می شود، ارائه دهیم. رده بندی...
یکی از مفاهیم اصلی در تئوری جبرهای باناخ، طیف و شعاع طیفی می باشد که نقش مهمی را در این زمینه ایفا می کند. از طیف و شعاع طیفی در مورد پیوستگی، پیوستگی خودکار و حل معادلات عملگر استفاده می شود. در این پایان نامه ابتدا مفهوم طیف را معرفی می کنیم سپس تعمیم هایی از آن موسوم به طیف رنسفورد، شبه طیف و طیف شرطیرا ارائه می دهیم. در ادامه نشان خواهیم داد که طیف معمولی و طیف شرطی حالت خاصی از طی...
در این پایان نامه، شرایط لازم و کافی برای میانگین پذیری و میانگین پذیری ضعیف جبرهای باناخ را بررسی می کنیم و نشان می دهیم که برای یک گروه فشرده ی موضعی با تابع وزن ?،جبر بورلینگ (l^1 (g,? یک جبر باناخ است. علاوه بر این اگرg یک گروه فشرده ی موضعی آبلی باشد، (l^1 (g,? میانگین پذیر ضعیف است اگر و تنها اگر هیچ همریختی گروهی پیوسته ی غیر بدیهی ?:g?c موجود نباشد که ?>(((sup_t?g(|?(t)|/(?(t)?(t^(-1.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید