نتایج جستجو برای: شبکه عصبی پرسپترون چند لایه mlp
تعداد نتایج: 133268 فیلتر نتایج به سال:
برآورد دبی اوج بهعنوان یکی از مباحث اصلی در مدیریت منابع آبی و سیلاب نقش اساسی در طراحی سازههای آبی و اقدامات بیومکانیکی در حوزههای آبخیز دارد، بهطوری که برآورد صحیح آن نقش اساسی در موفقیت کارهای اجرایی دارد. در این بررسی، سعی شده با استفاده از روشهای هوش مصنوعی (شبکه عصبی MLP، ترکیب شبکه عصبی MLP و شبکه SOFM، GRNN، ترکیب خوشهبندی FCM و ANFIS) دبی بیشینه رودخانه یلفان در محل ایستگا...
پیشبینی نوسان یکی از مسایل بسیار مهم در بازارهای مالی است که توجه بسیاری از پژوهشگران دانشگاهی و کارشناسان این حوزه را در چند دهه ی گذشته به خود جلب کرده است. در پژوهش حاضر با توجه به این ضرورت، به بررسی مدلسازی و پیش بینی نوسان بازار سهام با استفاده از ترکیب شبکه های عصبی مصنوعی و الگوهای واریانس شرطی پرداخته میشود. در این تحقیق از شبکه های عصبی پرسپترون چند لایه (MLP ) ، مدلهای ناه...
استفاده از مدلهای تجربی آماری از روش های کاربردی رایج، میان مدیران منابع جنگلی است. تحلیل رگرسیون نیز از روشهای آماری بوده که می تواند برای برآورد حجم استفاده گردد. این روش نیازمند پیش فرض و دارای محدودیتهایی مانند نرمال بودن توزیع داده ها، عدم رابطه هم خطی، یکسان بودن واریانس خطاها است. استفاده از روش های جدید مثل شبکه های عصبی مصنوعی، دارای محدودیت های مذکور نیست. در این بررسی هدف مق...
سابقه و هدف: در مدیریت منابع جنگلی، فرآیندهای تصمیمگیری مثل عوامل کیفی در معادلات ریاضی وارد نمیشوند. درسالهای اخیر شبکههای عصبی، کاربرد فراوانی در منابع جتگلی داشتهاند. این تحقیق به مقایسه شبکه عصبی پرسپترون چندلایه و شبکه تابع پایه شعاعی در پیشبینی حجم صنعتی و هیزمی درختان پرداخته است. بررسی عملکرد شبکههای مختلف و یافتن بهترین نوع آن برای دستیابی به نتایج قابل قبول و معتبر از اهداف این...
در این پروژه، پارامترهای ذاتی مدار معادل سیگنال کوچک یک gaas hemt، در برابر بایاس (vds و vgs)، فرکانس (f) و دما(t) ، با استفاده از شبکه های عصبی پرسپترون چند لایه ای (mlp) و تابع پایه شعاعی (rbf) مدل شده اند. شبکه های عصبی پیاده سازی شده، شامل ساختارهایی با چهار ورودی (بایاس (vds و vgs)، دما و فرکانس) و هشت خروجی (مقدار پارمترهای ذاتی gaas hemt و نیز فرکانس قطع آن) می باشند، که در پایان از نظر ...
فرآیند اکتشاف منابع هیدروکربنی بهعنوان فرآیندی بسیار پیچیده و پرهزینه میباشد. در این فرآیند فاکتورهای متعدد زمینشناسی، ژئوشیمی و ژئوفیزیک تهیه و باهم تلفیق میشوند. طراحی بهترین مسیر برای برداشت دادههای لرزهنگاری و همچنین تعیین بهترین محل برای حفر چاههای اکتشافی از اهمیت ویژهایی برخوردار است، زیرا نتیجه تعیین نادرست یا بیدقت این مکانها، صرف هزینه و زمان زیاد در طول عملیات میباشد. این ...
در تحقیق قبلی انجام شده ]1[، نانوسیالها با استفاده از نانولولههای کربنی اولیه و نانولولههای کربنی عاملدار با زمانهای رفلاکس یک، دو و چهار ساعت و غلظتهای 1/0، 25/0 و 5/0 درصد حجمی تهیه و رسانندگی حرارتی آنها در دماهای 20، 30، 40 و 50 درجهی سانتیگراد اندازهگیری شد. به دلیل پرهزینه و زمانبر بودن کارهای تجربی، معمولاً امکان بررسی گسترده آنها وجود ندارد. یکی از بهترین روشها برای بررسی کم...
هدف از این تحقیق بررسی توانایی سناریوهای مختلف شبکه های عصبی شامل شبکه های عصبی پرسپترون چند لایه(mlp) وشبکه های عصبی با پایه شعاعی(rbf) در مدل سازی فرآیند بارش- رواناب در مقیاس روزانه، که بطور عمده برای درک کنترل و مدیریت منابع آب مورد نیاز هستند، می باشد. تبدیل بارش- رواناب به علت تغییرات شدید زمانی و مکانی آن،یکی از پیچیده ترین مسائل در طبیعت می باشند، و وجود روابط قوی و غیرخطی میان متغیرها ...
پیش بینی سود هر سهم و ارزیابی سودمندی سودهای گذشته برای پیش¬بینی، از دیرباز مورد توجه پژوهشگران بوده و بدین منظورازروش¬هاومدل¬های متفاوت به منظورپیش¬بینی سودهای آتی شرکت¬هااستفاده شده است. در این راستا، در پژوهش حاضر، مدل¬های سری زمانی توضیحی جمعی میانگین متحرک ARIMAوشبکه¬های عصبی مصنوعی از نوع پرسپترون چند لایه (MLP) مورداستفاده قرارگرفتند وپیش بینی¬هابرای سودهای فصلی شرکتهای پذیرفته شده درباز...
در سال های اخیر استفاده از روش های غیرمستقیم برای برآورد خصوصیات خاک مورد توجه قرار گرفته است. در روش های معمول، اندازه گیری نفوذپذیری نیاز به وقت و هزینه زیادی دارد از طرفی وجود عبارات غیرخطی در روابط نفوذپذیری، مدل سازی آنها را با مشکل همراه کرده است. امروزه روش شبکه عصبی مصنوعی با کارایی بالا در مدل سازی مسایل غیرخطی کاربرد روزافزون آن را سبب شده است. در این پژوهش 200 نمونه خاک جمع آوری شده ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید