نتایج جستجو برای: عملگرهای هیلبرت اشمیت
تعداد نتایج: 2414 فیلتر نتایج به سال:
مطالعه عملگرهای کرانداریکی ازموضوعات مهم دربحث نظریه گروهها است ساده ترین نمونه ماتریسها هستند که درتمام گرایش های ریاضی وجوددارند ماتریسها درریاضیات معرفی شدندوتاامروزویژگی های آنها بررسی می شودزیراآنهانقش مهمی درریاضی وکاربردهای آن بازی می کنند هدف اصلی پایان نامه مطالعه برد عددی عملگرهای خطی کراندارروی فضای هیلبرت وآشنایی با مسایل مطرح شده دراین زمینه را دارد
در این پایان نامه نشان می دهیم که قاب های ترکیبی، -g قاب ها و -g قاب های باناخ، تحت آشفتگی های کوچک و عملگرهای وارون پذیر پایدار هستند. از طرف دیگر دنباله های فوق بسلی در فضاهای هیلبرت را معرفی می کنیم و نشان می دهیم که هیچ قاب در فضای هیلبرت با بعد نامتناهی نمی تواند دنباله ی فوق بسلی باشد و هر قاب در فضای هیلبرت با بعد متناهی دنباله ی فوق بسلی می باشد. در آخر نشان می دهیم ک...
موضوع این رساله مطالعه برخی روش های تکراری در نظریه عملگرهای یکنوا و نظریه نقطه ثابت در فضاهای هیلبرت و آدامار است. در این رساله پس از مروری کوتاه درباره روش های تکراری کلاسیک در تقریب نقطه ثابت یک نگاشت انقباضی مانند روش های تکراری من و هالپرن، روش تکراری هالپرن را برای تقریب نقطه ثابت مشترک یک خانواده از نگاشت های قویا شبه انقباضی در فضای هیلبرت به کار می بریم. سپس کاربردهایی از این طرح تکرار...
در این پایان نامه ابتدا دو رده از عملگرهای روی فضای هیلبرت به نام های $-(alpha,eta)$ نرمال و $a^*_p$ که تعمیمی از عملگرهای نرمال می باشند، تعریف می شود و نشان داده می شود که تحت شرایط مطلوبی $z+t$ نیز $-(alpha,eta)$ نرمال خواهد بود و در برخی حالت ها مضربی از نرم عملگری این رده عملگرها از شعاع طیفی کوچکتر می باشد. همچنین نشان داده می شود که عملگرهای رده ی $a^*_p$ نرمال گون هستند و صفر ...
برآورد عمق بیهنجاریهای گرانییکی از مهمترین مراحل در تفسیردادههای گرانیسنجی است. ازاینرو در این تحقیق روشی برای برآورد عمق بیهنجاریها با استفاده از روش تبدیل هیلبرت تغییریافته عرضه میشود. تبدیل هیلبرت، یک عملگر خطی است که فاز تابع را در بسامدهای مثبت به اندازه 90 درجه اضافه و در بسامدهای منفی به اندازه 90 درجه کاهش میدهد، درحالیکه دامنه تابع تغییر نمیکند. تبدیل هیلبرت تغییریافته مش...
در ابتدا به بررسی جبرهای نسبت بر روی عملگرهای وارون پذیر روی فضاهای هیلبرت می پردازیم و توسیعی ارایه خواهیم داد که این جبرها را روی فضاهای باناخ تعریف می کند وخواص آنها را بررسی خواهیم کرد. در فصل بعد جبری را معرفی می کنیم که به ازای هر عملگر روی فضای هیلبرت با بعد نامتناهی تعریف خواهد شد که آن را جبر طیفی می نامیم. نشان می دهیم که این جبر شامل جابجاگرهای آن عملگر است و در بسیاری از حالات این ش...
ما در این پایان نامه به یک کلاس از عملگرهای القایی نرم افزار می پردازیم. بدین صورت که جایگزین هایی با بعد متناهی برای l2-نرم در نظر می گیریم و خواص تقریب روی زیرفضاهای هیلبرت از (l2) را مطالعه می کنیم. این کلاس شامل بازآفرینی هسته فضای هیلبرت (rkhs) خواهد بود. نتایج به طور ضمنی برای تجزیه و تحلیل پایه روی فضاهای خطی با بعد متناهی خواهد بود و مسائلی در این زمینه را مورد بررسی قرار خواهیم داد.
در این رساله به بررسی مدول های تبدیلات خطی روی فضاهای برداری و همچنین مدول های عملگرهای خطی و کراندار روی فضاهای هیلبرت می پردازیم.
در این تئوری جدید از -c*جبرها فضاهایی که مدولهایی روی یک -c*جبرهستند یک نقش اساسی بعهده دارند. این فضاها، دارای ساختاری شبیه به یک حاصلضرب داخلی در یک فضای هیلبرت ، می باشند ولی بجای مقدار اسکالر مانند حالتی که فضا، فضای هیلبرت هست ، مقدارش در -c*جبر قرار می گیرد. این چنین فضاها دارای یک نرم طبیعی که مربوط به آنها می باشد هستند و اگر نسبت به این نرم کامل باشند هیلبرت -c*مدول نامیده می شوند. متع...
در این پایاننامه قصد داریم به بررسی نامساوی کوشی ـ شوارتز برای عملگرهای مختلط مقدار خود الحاق روی فضاهای هیلبرت بپردازیم. در این راستا مثال های مختلفی ارائه خواهیم نمود. همچنین معکوس نامساوی مثلثی در c^{*} -مدول های هیلبرت را بررسی خواهیم نمود. بالاخره معکوس نامساوی های کوشی ـ شوارتز جمعی و ضربی را برای فرم های یک و نیم خطی مورد مطالعه قرار خواهیم داد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید