نتایج جستجو برای: تقریبا فشرده
تعداد نتایج: 9752 فیلتر نتایج به سال:
مطابق معمول حلقه توابع پیوسته حقیقی مقدار روی فضای تیخونوف x را با c(x) نمایش می دهیم. اگر برای هر نشاننده ی توپولوژیکf : x?y نگاشت القایی ?:c(y)?c(x) اپی مورفیس در کاتگوری حلقه های جابجایی باشد. آنگاه فضای xرا فضایی cr-epic مطلق می نامند.فضا های تقریبا فشرده و p-فضاهای لیندلوف از ساده ترین این نوع فضاها می باشند.
اگر g گروه فشرده موضعی و ug بزرگترین نیم گروه فشرده سازی باشد، آنگاه برای هر عنصر s از گروه g که sعنصر همانی نباشد در ug داریم:sx برابر x برای هر x عضو ug نخ.اهد بود. این موضوع را ویچ برای هر گروه فشرده موضعی بیان کرد. در این پایان نامه این موضوع را در فشرده سازی wap و فشرده سازی luc از گروه فشرده موضعی gبررسی می کنیم.
مطابق معمول حلقه ی توابع پیوسته حقیقی مقدار روی فضای تیخونوف x را با( c(x نمایش می دهیم . اگر برای هر نشاننده ی توپولوژیکf:x?(??( ) y) ?: c(y) ?(??( ) )c(x) اپی مورفیسم در کاتگوری حلقه ها ی جابجایی باشد آن گاه فضای x را فضایی cr- epic مطلق می نامند. فضاهای تقریبا فشرده و فضاهای لیندلوف از ساده ترین این نوع فضاها می باشند-p در این پایان نامه شرایطی که یک فضا تحت آن cr-epic مطلق است مورد ...
ادوین هویت، m- توپولوژی روی (x) cرا تعریف کرد و آن را با cm( x ) نشان داد و ثابت کرد که خواص توپولوژیکی معین فضای x، می تواند خواص توپولوژیکی معین cm( x ) را مشخص کند. به عنوان مثال او نشان داد که x شبه فشرده است، اگر و تنها اگر فضای cm( x ) متری پذیر باشد. در این حالت m- توپولوژی دقیقاً توپولوژی همگرای یکنواخت می شود. در این مقاله توپولوژی ظریف تری روی c( x ) تعریف می کنیم که پایه اش بر عناصر...
اگر x فضای فشرده حقیقی باشد اشتراک همه ایدآل های ماکسیمال آزاد c(x) با ck(x) برابر است و هر فضایی که چنین ویژگی داشته باشد، ?-فشرده نامیده می شود. در سال 1969 ماندلکر زیر مجموعهی گرد در فضای ?x را تعریف کرد و در سال 1973 به همراه جانسون نشان دادند که?x کوچکترین فضای? -فشرده بین x,?x می باشد.همچنین ماندلکر نشان داد که فضای x،یک p-فضا است اگر وتنها اگر هر زیر مجموعه ی ?x گرد باشد. در این رساله ن...
یک فضای هاسدورف ، تقریبا گسسته نامیده می شود هرگاه دقیقا یک نقطه نامنفرد داشته باشد. یک فضای تیخانف -sv, y فضا نامیده می شود، هرگاه c(y)/p برای هر ایدآل اول p از c(y)، ارزیابی باشد. ثابت می شود که فضای تقریبا گسسته x که بصورت d { } می باشد، -sv فضاست اگر و تنها اگر x به صورت اجتماع متناهی از زیر فضاهای ناهمبند پایه ای بسته باشد اگر و فقط اگر m{f c(x): f()0}شامل تعداد متناهی ایدآل های اول مینیما...
چکیده: در این پایانامه برای هر یک از حالتهای آفین, ریمانی, تقریبا هرمیتی,تقریبا پاراهرمیتی,تقریباکواترنیونی, تقریباپاراکواترنیونی, هرمیتی و پاراهرمیتی یک مدل جبری محض معرفی می کنیم. نشان می دهیم که هر یک از مدل های جبری یک مدل خمیدگی برای خمینه های فوق می باشند. همچنین مسائلی را در حالت ایوانف – پتروا برحسب تحقق خمیدگی بیان می کنیم. در فصل اول تعاریف مقدماتی که در فصل های بعدی مورد استفاده ق...
در این پایان نامه ابتدا برخی از ویژگی های عملگرهای دانفورد-پتیز را بیان می کنیم . سپس شرایطی را مطرح میکنیم که تحت آنها هر عملگر دانفورد-پتیز، m-ضعیف فشرده باشد. در ادامه پس از تعریف عملگرهای نیم فشرده، به بررسی رابطه بین m–ضعیف فشرده و نیم فشرده بودن عملگرهای دانفورد-پتیز می پردازیم. سپس به مطالعه خواص عملگرهای تقریبا دانفورد-پتیز پرداخته و با ارائه قضایایی به بیان شرایط لازم و کافی برای تقریب...
چکیده بر اساس تعریف مجموعه های l- محدود و عملگرهای کاملاً پیوسته محدود در فضاهای باناخ مجموعه های تقریبا -l محدود و عملگرهای کاملاً پیوسته تقریبا محدود مجزا در مشبکه های باناخ را تعریف کرده و برخی از خواص آن ها را بررسی می کنیم. همچنین شرایطی را پیدا می کنیم که تحت آن ها دو مجوعه ی l- محدود و تقریبا -l محدود یکسان هستند. همچنین خواص گلفاند-فیلیپس قوی ، دانفورد-پتیس فشرده ی نسبی قوی ، شور ، دا...
در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید