نتایج جستجو برای: نوتری
تعداد نتایج: 281 فیلتر نتایج به سال:
این پایان نامه ادامه مطالعه گراف ایده آل پوچساز حلقه های جابجایی معرفی شده در [6] می باشد. فرض کنید r یک حلقه جابجایی با a(r) مجموعه ایده آل ها با پوچساز غیر صفر و z(r) مجموعه ای از مقسوم علیه های صفر باشد. گراف ایده آل پوچساز حلقه r به عنوان گراف (بی جهت) ag(r) که رأس های آن a(r)* = a(r) {(0)} تعریف می شود که در آن برای تمام رأس های مجزای i و j، i—j یک یال است اگر و تنها اگر ij = 0. در ابتدا ق...
فرض کنید r یک حلقه ی جابجایی، یکدار و نوتری باشد. نیز فرض کنید که m یک r-مدول بوده و i,j دو ایده آل در r باشند. در این رساله، با معرفی زیرمجموعه ی (w(i,j از (spec(r تعمیمی از کوهمولوژی موضعی را ارائه میدهیم که آن را کوهمولوژی موضعی نسبت به دو ایده آل (i,j) خوانده و با نماد (hii,j(m نمایش میدهیم. پس از بررسی خواص اساسی فانکتور hii,j (-) و مجموعه ی (w(i,j، با معرفی همبافت چک تعمیم یافته نشان ...
فرض کنیم r یک حلقه جابجایی و نوتری و a ایده آلی از r باشد و m یک r – مدول باشد. ابتدا نشان می دهیم که اگر m متناهی مولد باشد و مدولهای کوهمولوژی موضعی (h(m مینیماکس باشند آنگاه برای هر زیر مدول مینیماکس n از m مدول ( hom (r/i, h(m)/n متناهی مولد است که نتیجه می دهد مجموعه (ass(h(m)/n یک مجموعه متناهی است در ادامه برای مدول دلخواه m عضویت مدولهای کوهمولوژی موضعی (h(m به یک کلاس زیر کاتگوری سر خ...
در این پایان نامه پس از بیان چند تعریف و قضیه ی مقدماتی در فصل 1، مفاهیم مدول های (n,d)-انژکتیو و (n,d)-یکدست و (n,d)-حلقه ی (ضعیف) راست را در فصل 2 معرفی کرده و بعضی از خصوصیات (n,d)-حلقه ها را بیان می کنیم. در فصل 3 ابتدا مفهوم حلقه های n-منسجم را براساس مفهوم حلقه های نوتری و حلقه های منسجم تعمیم داده و سپس به برسی خصوصیات این حلقه ها می پردازیم. در فصل 4 با استفاده از مفاهیمی چون پیش پوش (n...
فرض کنیدrیک حلقه جابجایی و یکدار باشد.-rمدول یکانی m هم ضربی است، هرگاه برای هر زیرمدول n از m، ایده ال a از r موجود باشد به طوری که n مجموعه عناصر m از m باشد کهam=0 در این پایان نامه اثبات می شود که اگرm یک -rمدول با تولید متناهی باشد و b پوچساز m در r باشد، آنگاه حلقه r/bنیم موضعی است و در حالاتی خاصm خارج قسمت با بعد متناهی است. علاوه بر ...
در جبر همولوژی بعدهای انژکتیو، پروژکتیو و یکدست نقش مهم و اساسی ای بازی می کنند. در این پایان نامه ما به مطالعه بعدهای گرنشتاین انژکتیو،گرنشتاین پروژکتیو و گرنشتاین یکدست، که در بعضی حالتهای خاص ارتباط تنگاتنگی با بعدهای انژکتیو، پروژکتیو و یکدست معمولی دارند، می پردازیم. نتایج بسیار زیادی در مورد بعدهای گرنشتاین وجود دارد که روی رده های خاصی از حلقه های نوتری، بویژه حلقه های cohen–macaulay که ...
در این رساله با استفاده از مفهوم a – می نیماکس مدول ها ثابت می کنیم به ازای هر زیرمدول a – می نیماکس n از m))h_a^t مجموعه ی ایده آل های اول وابسته ی n/m))h_a^t متناهی می باشد. فرض کنیم r یک حلقه ی جابه جایی و نوتری و a یک ایده آل از r باشد. همچنین فرض کنیم m یک r – مدول a – می نیماکس و t یک عدد صحیح نامنفی باشند. در این صورت ابتدا نشان می دهیم که برای هر i<t، m))h_a^i مدول a – می نیماکس می باشد...
چکیده: در این پایان نامه، ما عناصر به طور ضعیف اول و عناصر تقریبا اول را در مشبکه های ضربی مطالعه می کنیم. در ادامه پی-مشبکه های ضعیف و مشبکه های عناصر اصلی و مشبکه های به طور ضعیف عناصر اصلی را مشخص می کنیم.هم چنین مشخصات جدیدی را برای پی-دامنه ها و مشبکه های عناصر اصلی بر اساس عناصر تقریبا اول ارائه می دهیم. در پایان نشان میدهیم که در یک مشبکه ی نوتری مانند l هر عنصر سره یک حاصلضرب متناهی از ...
فرض کنید i یک ایده آل از حلقه جابجایی موضعی نوتری (r,m)، m یک r-مدول متناهی مولد و برای عدد نامنفی i، (f_i^i(m نشان دهنده i-امین مدول کوهمولوژی موضعی صوری m نسبت به ایده آل i باشد . در این پایان نامه بعضی نتایج مربوط به ویژگی های متناهی بودن و آرتینی بودن مدول های کوهمولوژی موضعی صوری را ثابت می کنیم; که نشان می دهد این مدول ها شبیه مدول های کوهمولوژی موضعی رفتار می کنند . به علاوه ثابت می کنی...
برای زیرمدول nاز m،زیرمدول kازm را مکمل n گوییم، اگر k بااین خاصیت که با n اشتراک صفر دارد ماکسیمال باشد. زیرمدول kازm را مکمل گوییم،اگر مکمل یک زیرمدول از m باشد. مدول را cs-مدول گوییم، اگر هر زیرمدول مکمل آن جمع وند مستقیمش باشد. مدول را c??-مدول ضعیف گوییم، اگر هر زیرمدول نیم ساده از آن دارای مکملی باشد که جمع وند مستقیمش باشد. در این پایان نامه نشان داده شده که اگر مدول m یک c??-مدول ضعیف ب...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید